# Appendix A

## Conditional Waiver of Discharge Requirements for Timber Harvest and Vegetation Management Activities (General Conditions)

21. The Water Board held a public hearing on April 10, 2014, in South Lake Tahoe, California, and considered all evidence concerning this matter.

**IT IS HEREBY ORDERED** that in order to be enrolled under this Timber Waiver, an enrollee must meet applicable eligibility criteria and requirements for that category of activities covered by this Waiver, including the General Provisions and all applicable general and category-specific conditions of this Timber Waiver, as set forth below.

#### B. GENERAL PROVISIONS

- 1. Pursuant to Water Code section 13269, subdivision (a), the Water Board waives requirements to submit reports of waste discharge and obtain waste discharge requirements for persons proposing or conducting activities which meet the eligibility criteria and comply with the conditions and general provisions set forth in this Timber Waiver.
- 2. The Water Board anticipates that most activities will proceed under a single category of the Timber Waiver. However, if a project is phased, or divided geographically, such that portions qualify under Category 1, 2, or 3; and other portions qualify under Category 4, 5, or 6; the enrollee has the option of enrolling such phases or portions under different categories. Water Board notification is only required for the portions of projects or activities that qualify under Category 4, 5, or 6.
- 3. The Water Board does not waive the filing of a report of waste discharge or waive waste discharge requirements for persons proposing projects that include activities with impacts that are not mitigated to less-than-significant levels, such as those identified in a CEQA environmental impact report, or a National Environmental Policy Act (NEPA) or Tahoe Regional Planning Agency (TRPA) environmental impact statement. Not all timber harvest and vegetation management activities proposed in the Lahontan Region will be eligible for this Timber Waiver. Enrollees proposing activities that are not eligible for this Timber Waiver must file a report of waste discharge with the Water Board pursuant to Water Code section 13260.
- 4. This Timber Waiver shall not create a vested right to discharge waste and all such discharges shall be considered a privilege, as provided for in Water Code section 13263, subdivision (g). The Water Board Executive Officer may terminate the applicability of the Timber Waiver described herein to any activity at any time when such termination is in the public interest and/or the activity could affect the quality of waters of the state for beneficial uses.
- 5. This Timber Waiver shall become effective on April 10, 2014 and shall expire on April 10, 2019 unless terminated or renewed by the Water Board. Discharges regulated under this Timber Waiver are not authorized, and waste discharge requirements are not waived, after April 10, 2019 unless this Timber Waiver is renewed by Water Board action.

- Discharges currently regulated under the 2009 Timber Waiver may proceed under the conditions of that waiver, or may be re-enrolled under this 2014 Timber Waiver. After April 9, 2014 no new applications for permit coverage under Resolution No. R6T-2009-0029 (the 2009 Timber Waiver) will be accepted.
- 7. Timber harvest and vegetation management activities approved by CAL FIRE under an Exemption or Emergency Notice may be eligible for coverage under Timber Waiver Categories 1, 2, 3, 4, or 6, depending on the scope of the proposed activities.
- 8. A monitoring and reporting program is adopted in conjunction with this 2014 Timber Waiver and shall be adhered to by all waiver enrollees, using the attached monitoring forms adopted by the Water Board.
- 9. Pursuant to Water Code section 13269, Timber Waiver enrollees may request a waiver of monitoring or propose an alternate monitoring and reporting program, subject to approval by the Executive Officer. The Executive Officer may impose additional or revised monitoring and reporting requirements pursuant to Water Code section 13267. The Executive Officer may modify application, monitoring, and reporting forms (Attachments C through M).

#### C. GENERAL CONDITIONS

- 1. Activities must be conducted in compliance with the Basin Plan, and other applicable laws, regulations, and plans.
- 2. Wastes, including but not limited to, petroleum products, soil, silt, sand, clay, rock, felled trees, slash, sawdust, bark, ash, pesticides, must not be discharged to surface waters or be deposited in locations where such material may discharge to surface waters. If discharge of wastes to surface waters occurs (not previously authorized by the Water Board), the enrollee must notify the Water Board by telephone or email within 24 hours of detection of the discharge or the next business day, whichever comes first.
- 3. Condition for activities within the Little Truckee River, Truckee River, or Lake Tahoe HUs only: If timber harvest and vegetation management activities are planned within 100-year floodplains of the Little Truckee River, Truckee River, or Lake Tahoe HUs, SEZs, or high erosion hazard lands (Bailey Land Classification 1a, 1c, or 2) of the Lake Tahoe HU, waste discharge prohibitions <u>may</u> apply. The Water Board grants a conditional Basin Plan Prohibition Exemption in certain cases as described in Attachment N, for slash piling and burning in Lake Tahoe HU SEZs that is conducted under Waiver Category 6, and in accordance with the requirements of Attachment Q. Review Attachments N and Q to verify if any proposed activities would need a Basin Plan prohibition exemption prior to proceeding.
- 4. Activities conducted under the Timber Waiver must comply with the categoryspecific eligibility criteria and conditions, including monitoring and reporting requirements where specified. The enrollee must conduct activities in accordance

with information submitted in the application for waiver coverage, if one is required. For Categories 4, 5, and 6, the enrollee must conduct monitoring and reporting pursuant to Water Code section 13267 unless alternate monitoring and reporting requirements have been approved by the Executive Officer.

- 5. Timber harvest and vegetation management activities must be conducted in accordance with any design features, management actions, mitigation measures, and monitoring plans developed as part of complying with CEQA, NEPA, the FPRs, and/or TRPA environmental analysis requirements.
- 6. Timber harvest and vegetation management activities subject to this Timber Waiver must not create a pollution, contamination, or nuisance, as defined by Water Code section 13050, subdivisions (k), (l), and (m).
- 7. All equipment used must be monitored for leaks, and removed from service if necessary to protect water quality. All spills must be immediately contained and spilled materials and/or contaminated soils must be properly disposed. An emergency spill kit adequate to contain spills that could result from onsite equipment must be at the project site at all times of equipment use.
- 8. This Timber Waiver does not permit any illegal activity, and does not preclude the need for permits or licenses that may be required by other governmental agencies, or other approvals by the Water Board such as discharges subject to a National Pollutant Discharge Elimination System (NPDES) permit under the Clean Water Act, including silvicultural point sources as defined in 40 Code of Federal Regulations, section 122.27. This waiver is not a substitute for state Water Quality Certification (WQC) under section 401 of the federal Clean Water Act which is required if a federal permit, such as a Clean Water Act section 404 permit, is required. Also, persons practicing forestry must ensure that they maintain appropriate licenses and certifications pursuant to Public Resources Code sections 752 and 753.
- Pursuant to Water Code section 13267 subdivision (b) and Water Code section 13269 subdivision (a), any proposed material change to the activities proceeding under the Timber Waiver must be reported to Water Board staff in advance of implementation of any such change. Material changes include, but are not limited to:
  - (a) Change of project location or increase in size;
  - (b) The addition of winter period operations;
  - (c) Relocation or addition of watercourse crossings; or
  - (d) Addition or relocation of roads or skid trails into a WBBZ.
- 10. Any proposed material change to a project that does not result in a change in qualification under this waiver to a higher Category (e.g., Category 4 to Category 4) must be reported to the Water Board prior to implementation. Material changes to Category 6 projects shall not proceed until Category 6, Condition 1 is satisfied.

Any proposed material change to a project that results in a change in qualification

under this waiver to a higher category (e.g., Category 2 to 4, or Category 4 to 6) must follow the notification requirements as if it was a new application.

- 11. A report of waste discharge must be filed with the Water Board pursuant to Water Code section 13260 for any proposed material change to the activities proceeding under the Timber Waiver that would result in ineligibility for Timber Waiver coverage.
- 12. For the purpose of performing inspections and conducting monitoring, Water Board staff must be allowed reasonable access onto property where timber harvest and vegetation management activities are proposed, are being conducted, or have been terminated or completed. Inspections and monitoring may include sample collection, measuring, and photographing/taping to determine compliance with waiver conditions and eligibility criteria. Such inspections and monitoring are consistent with Water Code section 13267, subdivision (c), PRC section 4604, subdivision (b)(1), and other applicable laws.

Prior to, or immediately upon entering the property, Water Board staff will attempt to contact the site owner, persons performing the timber harvest and vegetation management activities, or other on-site representative(s) in order to inform the landowner or persons onsite of each inspection, and to discuss any safety considerations. If consent to access to property is unreasonably withheld, the Executive Officer may terminate the applicability of the Timber Waiver.

- 13. **Condition for Categories 4, 5, or 6:** For the purpose of observing, inspecting, photographing, digitally recording or videotaping, measuring, and/or collecting samples or other monitoring information to document compliance or non-compliance with the eligibility criteria, conditions, or provisions of this Timber Waiver, enrollees agree to allow Water Board staff:
  - (a) Entry at any time, with or without advance notice, onto: (1) the real property where timber harvest and vegetation management activities covered under this Timber Waiver are proposed, are being conducted, or have concluded; and (2) any and all outdoor areas in the control or ownership of the enrollee, in the vicinity of and downstream of timber harvest and vegetation management activities; and
  - (b) Access to and permission to copy any record required to be kept under the conditions of this Timber Waiver, including, but not limited to, any selfmonitoring records and/or equipment used to fulfill monitoring requirements.

#### D. TIMBER WAIVER CATEGORIES

## Category 1: Defensible space, fire prevention, dead-dying-diseased tree removal, and construction activities

Eligibility Criteria:

Activities that may proceed under this category are those:

- (1) Undertaken to comply with state, local, or county defensible space requirements, including PRC section 4291 requirements, OR
- (2) Conducted on undeveloped lots (as defined in Attachment A) up to three acres in size for the purpose of fuels reduction and/or construction activities, OR
- (3) Conducted on public lands or with public funding (where a Registered Professional Forester (RPF), Federal Forestry Professional, or Natural Resource Professional has developed and oversees the plan) to provide up to a 300-foot defense zone adjacent to subdivision boundaries, private parcel lot lines, and/or around structures and facilities (not including linear features such as roads, trails, or utility corridors), OR
- (4) Conducted under a CAL FIRE issued Forest Fire Prevention Exemption and in compliance with CCR, title 14, section 1038, OR
- (5) Undertaken to remove isolated hazard trees in response to an imminent threat to life or property, OR
- (6) Conducted under a CAL FIRE issued Dead, Dying, Diseased Exemption in compliance with CCR, title 14, section 1038(b) without any exceptions to section 1038(b) condition nos. 6 or 9.

#### Conditions:

Enrollees conducting activities meeting the eligibility criteria listed above are not required to notify, apply, or report monitoring to the Water Board if they comply with the following conditions:

- (1) Timber harvest and vegetation management activities must not cause or create erosion, destabilization of stream banks, temperature increases in waterbodies, disturbance to non-target WBBZ (as defined in Attachment B) vegetation, or concentrated surface runoff.
- (2) All areas disturbed by activities must be stabilized (as defined in Attachment A) at the conclusion of the activity or before the winter period (as defined in Attachment A), whichever is sooner.
- (3) Chipped and masticated material must not be discharged to waterbodies, or be deposited in locations where such material may discharge to a waterbody. Within WBBZs, chipped and masticated material must not exceed an average of two inches in depth, with a maximum depth of four inches.
- (4) Slash piles must not be built or burned within WBBZs, SEZs (as defined in Attachment A), or 100-year floodplains (as defined in Attachment A).

- (5) Equipment, including tractors and vehicles, must not be driven into SEZs, wet areas, or WBBZs, except over existing roads or watercourse crossings where vehicle tires or tracks remain dry.
- (6) The operation of equipment, including tractors and vehicles, shall minimize soil disturbance to the maximum extent practicable.
- (7) No tractor, vehicle, or equipment use on saturated soils (as defined in Attachment A).
- (8) All activities conducted under Category 1 must comply with the General Conditions of this Timber Waiver and meet one of the category-specific eligibility criteria listed above.

### Category 2: Activities conducted by hand crews (as defined in Attachment A) including thinning operations and prescribed fire

#### Eligibility Criteria:

Activities that may proceed under this category must meet all of the following eligibility criteria:

- (1) Activities shall be conducted by hand, except for low impact equipment, see Eligibility Criteria 2(a) below, to assist hand crew operations.
- (2) Tractor, vehicle, and equipment access shall be limited to existing roads with the following exceptions:
  - (a) Low impact equipment with ground pressures less than 10 psi, such as chippers, brush mowers, or similar equipment for onsite processing of materials cut by hand crews; and
  - (b) Single passenger all-terrain vehicles (ATVs) or snowmobiles.
- (3) No construction or expansion of roads, crossings, landings, staging areas, etc.

#### Conditions:

Enrollees conducting activities meeting the eligibility criteria listed above are not required to notify, apply, or report monitoring to the Water Board if they comply with the following conditions:

- (1) On existing roads, tractors, vehicles, low-ground-pressure chippers or other equipment shall not be operated during saturated soil conditions (as defined in Attachment A).
- (2) Operation of ATVs, chippers, brush mowers, or similar equipment off roads must always occur at distances greater than 25 feet from a waterbody and when at least one of the following conditions occurs:

# **Appendix B**

## **Noise Calculations**



#### **Construction Source Noise Prediction Model**

|                                    |                         |                                   |           | <b>Reference Emission</b>              |                     |
|------------------------------------|-------------------------|-----------------------------------|-----------|----------------------------------------|---------------------|
|                                    | Distance to Nearest     | <b>Combined Predicted</b>         |           | Noise Levels (L <sub>max</sub> ) at 50 | Usage               |
| Location                           | <b>Receptor in feet</b> | Noise Level (L <sub>eg</sub> dBA) | Equipment | feet <sup>1</sup>                      | Factor <sup>1</sup> |
| Noise Standard 55 Leq              | 1,195                   | 55.0                              | Chain Saw | 85                                     | 1                   |
| Noise standard w/ 15-dB protection | 275                     | 70                                | Dozer     | 85                                     | 1                   |
| Beverly Dr. in Carnelian Bay       | 160                     | 76                                | Tractor   | 84                                     | 1                   |

| Ground Type                        | SOFT                                        |
|------------------------------------|---------------------------------------------|
| Source Height                      | 8                                           |
| Receiver Height                    | 5                                           |
| Ground Factor <sup>2</sup>         | 0.63                                        |
| Predicted Noise Level <sup>3</sup> | L <sub>eq</sub> dBA at 50 feet <sup>3</sup> |
| Chain Saw                          | 85.0                                        |

| Dozer   | 85.0 |
|---------|------|
| Tractor | 84.0 |
|         |      |

Combined Predicted Noise Level (L<sub>eq</sub> dBA at 50 feet) 89.5

Sources:

<sup>1</sup>Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

<sup>2</sup> Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

<sup>3</sup> Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$ 

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

D = Distance from source to receiver.

| Equipment                    | Acoustical<br>Usage<br>Factor (%) | Spec<br>721.560<br>Lmax @<br>50ft (dBA<br>slow) | Actual<br>Measured<br>Lmax @<br>50ft<br>(dBA slow) | No. of<br>Actual Data<br>Samples<br>(count) | Spec<br>721.560<br>LmaxCalc | Spec<br>721.560<br>Leq | Distance | Actual<br>Measured<br>LmaxCalc | Actual<br>Measured<br>Leq |
|------------------------------|-----------------------------------|-------------------------------------------------|----------------------------------------------------|---------------------------------------------|-----------------------------|------------------------|----------|--------------------------------|---------------------------|
| Description                  |                                   | 5.017                                           | (42) ( 5) ( 6) ( 7)                                |                                             |                             |                        |          |                                |                           |
|                              |                                   |                                                 |                                                    |                                             |                             |                        |          |                                |                           |
| Auger Drill Rig              | 20                                | 85                                              | 84                                                 | 36                                          | 79.0                        | 72.0                   | 100      | 78.0                           | 71.0                      |
| Backhoe                      | 40                                | 80                                              | 78                                                 | 372                                         | 74.0                        | 70.0                   | 100      | 72.0                           | 68.0                      |
| Bar Bender                   | 20                                | 80                                              | na                                                 | 0                                           | 74.0                        | 67.0                   | 100      |                                |                           |
| Blasting                     | na                                | 94                                              | na                                                 | 0                                           | 88.0                        |                        | 100      |                                |                           |
| Boring Jack Power Unit       | 50                                | 80                                              | 83                                                 | 1                                           | 74.0                        | 71.0                   | 100      | 77.0                           | 74.0                      |
| Chain Saw                    | 20                                | 85                                              | 84                                                 | 46                                          | 79.0                        | 72.0                   | 100      | 78.0                           | 71.0                      |
| Clam Shovel (dropping)       | 20                                | 93                                              | 87                                                 | 4                                           | 87.0                        | 80.0                   | 100      | 81.0                           | 74.0                      |
| Compactor (ground)           | 20                                | 80                                              | 83                                                 | 57                                          | 74.0                        | 67.0                   | 100      | 77.0                           | 70.0                      |
| Compressor (air)             | 40                                | 80                                              | /8                                                 | 18                                          | /4.0                        | /0.0                   | 100      | 72.0                           | 68.0                      |
| Concrete Batch Plant         | 15                                | 83                                              | na                                                 | 0                                           | 77.0                        | 68.7                   | 100      | 72.0                           | 60.0                      |
| Concrete Mixer Truck         | 40                                | 85<br>01                                        | 79<br>01                                           | 40                                          | 79.0                        | /5.0                   | 100      | 73.0                           | 69.0                      |
| Concrete Pullip Truck        | 20                                | 02                                              | 00                                                 | 50                                          | 24.0                        | 09.0<br>77.0           | 100      | 75.0                           | 77.0                      |
| Crane                        | 16                                | 85                                              | 90<br>81                                           | 405                                         | 79 0                        | 71.0                   | 100      | 75.0                           | 67.0                      |
| Dozer                        | 40                                | 85                                              | 82                                                 | 55                                          | 79.0                        | 75.0                   | 100      | 76.0                           | 72.0                      |
| Drill Rig Truck              | 20                                | 84                                              | 79                                                 | 22                                          | 78.0                        | 71.0                   | 100      | 73.0                           | 66.0                      |
| Drum Mixer                   | 50                                | 80                                              | 80                                                 | 1                                           | 74.0                        | 71.0                   | 100      | 74.0                           | 71.0                      |
| Dump Truck                   | 40                                | 84                                              | 76                                                 | 31                                          | 78.0                        | 74.0                   | 100      | 70.0                           | 66.0                      |
| Excavator                    | 40                                | 85                                              | 81                                                 | 170                                         | 79.0                        | 75.0                   | 100      | 75.0                           | 71.0                      |
| Flat Bed Truck               | 40                                | 84                                              | 74                                                 | 4                                           | 78.0                        | 74.0                   | 100      | 68.0                           | 64.0                      |
| Front End Loader             | 40                                | 80                                              | 79                                                 | 96                                          | 74.0                        | 70.0                   | 100      | 73.0                           | 69.0                      |
| Generator                    | 50                                | 82                                              | 81                                                 | 19                                          | 76.0                        | 73.0                   | 100      | 75.0                           | 72.0                      |
| Generator (<25KVA, VMS s     | 50                                | 70                                              | 73                                                 | 74                                          | 64.0                        | 61.0                   | 100      | 67.0                           | 64.0                      |
| Gradall                      | 40                                | 85                                              | 83                                                 | 70                                          | 79.0                        | 75.0                   | 100      | 77.0                           | 73.0                      |
| Grader                       | 40                                | 85                                              | na                                                 | 0                                           | 79.0                        | 75.0                   | 100      |                                |                           |
| Grapple (on Backhoe)         | 40                                | 85                                              | 87                                                 | 1                                           | 79.0                        | 75.0                   | 100      | 81.0                           | 77.0                      |
| Horizontal Boring Hydr. Jac  | 25                                | 80                                              | 82                                                 | 6                                           | 74.0                        | 68.0                   | 100      | 76.0                           | 70.0                      |
| Hydra Break Ram              | 10                                | 90                                              | na                                                 | 0                                           | 84.0                        | 74.0                   | 100      | 05.0                           | 00.0                      |
| Impact Pile Driver           | 20                                | 95                                              | 101                                                | 11                                          | 89.0                        | 82.0                   | 100      | 95.0                           | 88.0                      |
| Jacknammer                   | 20                                | 85                                              | 89                                                 | 133                                         | 79.0                        | 72.0                   | 100      | 83.0                           | 76.0                      |
| Wayntad Impact Hammar /      | 20                                | 00                                              | /5                                                 | 23                                          | 79.0                        | 72.0                   | 100      | 84.0                           | 02.0<br>77.0              |
| Pavement Scarafier           | 20                                | 90<br>85                                        | 90                                                 | 212                                         | 04.0<br>70 0                | 77.0                   | 100      | 04.0<br>84.0                   | 77.0                      |
| Paver                        | 50                                | 85                                              | 50<br>77                                           | 9                                           | 79.0                        | 72.0                   | 100      | 71.0                           | 68.0                      |
| Pickup Truck                 | 40                                | 55                                              | 75                                                 | 1                                           | 49.0                        | 45.0                   | 100      | 69.0                           | 65.0                      |
| Pneumatic Tools              | 50                                | 85                                              | 85                                                 | 90                                          | 79.0                        | 76.0                   | 100      | 79.0                           | 76.0                      |
| Pumps                        | 50                                | 77                                              | 81                                                 | 17                                          | 71.0                        | 68.0                   | 100      | 75.0                           | 72.0                      |
| Refrigerator Unit            | 100                               | 82                                              | 73                                                 | 3                                           | 76.0                        | 76.0                   | 100      | 67.0                           | 67.0                      |
| Rivit Buster/chipping gun    | 20                                | 85                                              | 79                                                 | 19                                          | 79.0                        | 72.0                   | 100      | 73.0                           | 66.0                      |
| Rock Drill                   | 20                                | 85                                              | 81                                                 | 3                                           | 79.0                        | 72.0                   | 100      | 75.0                           | 68.0                      |
| Roller                       | 20                                | 85                                              | 80                                                 | 16                                          | 79.0                        | 72.0                   | 100      | 74.0                           | 67.0                      |
| Sand Blasting (Single Nozzle | 20                                | 85                                              | 96                                                 | 9                                           | 79.0                        | 72.0                   | 100      | 90.0                           | 83.0                      |
| Scraper                      | 40                                | 85                                              | 84                                                 | 12                                          | 79.0                        | 75.0                   | 100      | 78.0                           | 74.0                      |
| Shears (on backhoe)          | 40                                | 85                                              | 96                                                 | 5                                           | 79.0                        | 75.0                   | 100      | 90.0                           | 86.0                      |
| Slurry Plant                 | 100                               | 78                                              | 78                                                 | 1                                           | 72.0                        | 72.0                   | 100      | 72.0                           | 72.0                      |
| Slurry Trenching Machine     | 50                                | 82                                              | 80                                                 | 75                                          | 76.0                        | 73.0                   | 100      | 74.0                           | 71.0                      |
| Soil Mix Drill Rig           | 50                                | 80                                              | na                                                 | 0                                           | 74.0                        | 71.0                   | 100      |                                |                           |
| Tractor                      | 40                                | 84                                              | na                                                 | 0                                           | 78.0                        | 74.0                   | 100      |                                |                           |
| Vacuum Excavator (Vac-tru    | 40                                | 85                                              | 85                                                 | 149                                         | 79.0                        | 75.0                   | 100      | 79.0                           | 75.0                      |
| Vacuum Street Sweeper        | 10                                | 80                                              | 82                                                 | 19                                          | 74.0                        | 64.0                   | 100      | 76.0                           | 66.0                      |
| ventilation Fan              | 100                               | 85                                              | 79                                                 | 13                                          | 79.0                        | 79.0                   | 100      | 73.0                           | 73.0                      |
| Vibrating Hopper             | 50                                | 85                                              | 87                                                 | 1                                           | /9.0                        | /6.0                   | 100      | 81.0                           | /8.0                      |
| Vibratory Concrete Mixer     | 20                                | 8U<br>0E                                        | 8U                                                 | 1                                           | /4.0                        | 0/.U                   | 100      | /4.0                           | b/.U                      |
| Warning Horn                 | 20<br>E                           | 95<br>95                                        | 55<br>TOT                                          | 44<br>12                                    | 89.U<br>70.0                | 82.U<br>66 0           | 100      | 95.0                           | 88.U                      |
| Welder / Torch               | 40                                | 73                                              | 74                                                 | 5                                           | 67.0                        | 63.0                   | 100      | 68.0                           | 64.0                      |
|                              |                                   |                                                 |                                                    | 2                                           | 07.0                        | 00.0                   | 200      | 00.0                           | 01.0                      |

Source:

FHWA Roadway Construction Noise Model, January 2006. Table 9.1

U.S. Department of Transportation CA/T Construction Spec. 721.560

# **Appendix C**

## Greenhouse Gas and Air Pollutant Emission Calculations

#### Forest Thinning Activity - Criteria Pollutants Only

Placer-Lake Tahoe County, Summer

#### **1.0 Project Characteristics**

#### 1.1 Land Usage

| Land Uses                 | Size | Metric            | Lot Acreage | Floor Surface Area | Population |
|---------------------------|------|-------------------|-------------|--------------------|------------|
| User Defined Recreational | 1.00 | User Defined Unit | 0.00        | 0.00               | 0          |

#### **1.2 Other Project Characteristics**

| Urbanization               | Rural                    | Wind Speed (m/s)           | 2.2   | Precipitation Freq (Days)  | 74    |
|----------------------------|--------------------------|----------------------------|-------|----------------------------|-------|
| Climate Zone               | 14                       |                            |       | Operational Year           | 2020  |
| Utility Company            | Sierra Pacific Resources |                            |       |                            |       |
| CO2 Intensity<br>(Ib/MWhr) | 1328.16                  | CH4 Intensity<br>(Ib/MWhr) | 0.029 | N2O Intensity<br>(Ib/MWhr) | 0.006 |

#### 1.3 User Entered Comments & Non-Default Data

Project Characteristics - This model run is to estimate exhaust emissions from forest thinning activity only. This model run is to estimate exhaust emissions of criteria air pollutants and precursors from forest thinning activity only. GHGs are estimated based on fuel consumption outside of CalEEMod.

Land Use - Forest thinning activity. Lot acreage is set to zero because no grading or excavation of earthen material would take place.

Off-road Equipment - Source of equipment list: Holmon, per. comm., October 16, 2015.

The chipper (proxied by crushing/processing equipment) would actually be 765 hp but equipment > 750 hp cannot be estimated by CalEEMod.

Construction Phase - Forest thinning only.

Grading - Forest thinning does not involve earth movement, excavation, or grading.

Demolition - Not applicable.

Trips and VMT - Emissions from worker trips and the truck hauling of chipped biomass and merchantable timber are estimated outside of CalEEMod.

On-road Fugitive Dust - Emissions from worker trips and the truck hauling of chipped biomass and merchantable timber are estimated outside of CalEEMod.

Architectural Coating - Not applicable. Vehicle Trips - Not applicable. Dummy values only. Vehicle Emission Factors - Not applicable. Vehicle Emission Factors - Not applicable. Vehicle Emission Factors - Not applicable. Road Dust - Not applicable. Woodstoves - Not applicable. Consumer Products - Not applicable. Area Coating - Not applicable. Landscape Equipment - Not applicable. Energy Use - Not applicable. Water And Wastewater - Not applicable. Solid Waste - Not applicable. Stationary Sources - Emergency Generators and Fire Pumps - Not applicable. Stationary Sources - Emergency Generators and Fire Pumps EF - Not applicable. Stationary Sources - Process Boilers - Not applicable. Stationary Sources - Process Boilers EF - Not applicable. Stationary Sources - User Defined - Not applicable. Land Use Change - Change in carbon sequestration are estimated by USFS staff using the Forest Vegetation Simulator. Sequestration - Change in carbon sequestration are estimated by USFS staff using the Forest Vegetation Simulator.

Construction Off-road Equipment Mitigation - Off-road Equipment Mitigation - Tier rating determined by engine size and model year with table at http://www3.epa.gov/otaq/standards/nonroad.nonraodci.chtm.

CalEEMod Version: CalEEMod.2016.3.1

Page 3 of 15

#### Forest Thinning Activity - Criteria Pollutants Only - Placer-Lake Tahoe County, Summer

Mobile Land Use Mitigation - Not applicable.

Mobile Commute Mitigation - Not applicable.

Area Mitigation - Not applicable.

Energy Mitigation - Not applicable.

Water Mitigation - Not applicable.

#### Waste Mitigation - Not applicable.

| Table Name              | Column Name                | Default Value | New Value    |
|-------------------------|----------------------------|---------------|--------------|
| tblConstEquipMitigation | NumberOfEquipmentMitigated | 0.00          | 1.00         |
| tblConstEquipMitigation | NumberOfEquipmentMitigated | 0.00          | 4.00         |
| tblConstEquipMitigation | NumberOfEquipmentMitigated | 0.00          | 2.00         |
| tblConstEquipMitigation | Tier                       | No Change     | Tier 4 Final |
| tblConstEquipMitigation | Tier                       | No Change     | Tier 3       |
| tblConstEquipMitigation | Tier                       | No Change     | Tier 4 Final |
| tblConstructionPhase    | NumDays                    | 0.00          | 1.00         |
| tblOffRoadEquipment     | HorsePower                 | 97.00         | 225.00       |
| tblOffRoadEquipment     | HorsePower                 | 97.00         | 225.00       |
| tblOffRoadEquipment     | HorsePower                 | 81.00         | 4.00         |
| tblOffRoadEquipment     | HorsePower                 | 85.00         | 750.00       |
| tblOffRoadEquipment     | HorsePower                 | 158.00        | 225.00       |
| tblOffRoadEquipment     | HorsePower                 | 158.00        | 230.00       |
| tblOffRoadEquipment     | HorsePower                 | 158.00        | 225.00       |
| tblOffRoadEquipment     | HorsePower                 | 158.00        | 186.00       |
| tblOffRoadEquipment     | OffRoadEquipmentUnitAmount | 0.00          | 1.00         |
| tblOffRoadEquipment     | OffRoadEquipmentUnitAmount | 0.00          | 1.00         |

| I DIEST THILLING ACTIVITY - CHIEFIA I DIVILATILE OFILY - I LACET-LAKE TAILOE COUNTY, SUTHILE | Forest Thinning Activit | v - Criteria Pollutants O | nly - Placer-Lake | Tahoe County, | Summer |
|----------------------------------------------------------------------------------------------|-------------------------|---------------------------|-------------------|---------------|--------|
|----------------------------------------------------------------------------------------------|-------------------------|---------------------------|-------------------|---------------|--------|

| tblOffRoadEquipment       | OffRoadEquipmentUnitAmount | 0.00  | 1.00             |
|---------------------------|----------------------------|-------|------------------|
| tblOffRoadEquipment       | OffRoadEquipmentUnitAmount | 0.00  | 1.00             |
| tblOffRoadEquipment       | OffRoadEquipmentUnitAmount | 0.00  | 1.00             |
| tblOffRoadEquipment       | OffRoadEquipmentUnitAmount | 0.00  | 1.00             |
| tblOffRoadEquipment       | PhaseName                  |       | Site Preparation |
| tblOffRoadEquipment       | PhaseName                  |       | Site Preparation |
| tblOffRoadEquipment       | PhaseName                  |       | Site Preparation |
| tblOffRoadEquipment       | PhaseName                  |       | Site Preparation |
| tblOffRoadEquipment       | PhaseName                  |       | Site Preparation |
| tblOffRoadEquipment       | PhaseName                  |       | Site Preparation |
| tblOffRoadEquipment       | UsageHours                 | 8.00  | 10.00            |
| tblOffRoadEquipment       | UsageHours                 | 8.00  | 10.00            |
| tblProjectCharacteristics | OperationalYear            | 2018  | 2020             |
| tblProjectCharacteristics | UrbanizationLevel          | Urban | Rural            |
| tblTripsAndVMT            | WorkerTripNumber           | 23.00 | 0.00             |

### 2.0 Emissions Summary

#### 2.1 Overall Construction (Maximum Daily Emission)

**Unmitigated Construction** 

|         | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|---------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Year    | lb/day |         |         |        |                  |                 |               |                   |                  | lb/day      |          |                 |                 |        |        |                 |
| 2018    | 6.3876 | 61.9283 | 27.0653 | 0.1177 | 0.5303           | 2.0005          | 2.5308        | 0.0573            | 1.9220           | 1.9793      | 0.0000   | 12,682.82<br>18 | 12,682.82<br>18 | 2.0148 | 0.0000 | 12,733.19<br>23 |
| Maximum | 6.3876 | 61.9283 | 27.0653 | 0.1177 | 0.5303           | 2.0005          | 2.5308        | 0.0573            | 1.9220           | 1.9793      | 0.0000   | 12,682.82<br>18 | 12,682.82<br>18 | 2.0148 | 0.0000 | 12,733.19<br>23 |

#### Mitigated Construction

|         | ROG                 | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10     | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|---------|---------------------|---------|---------|--------|------------------|---------------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Year    | lb/day              |         |         |        |                  |                     |               |                   |                  |             | lb/day   |                 |                 |        |        |                 |
| 2018    | 1.8647              | 21.1392 | 55.3120 | 0.1177 | 0.5303           | 0.7710              | 1.3012        | 0.0573            | 0.7710           | 0.8282      | 0.0000   | 12,682.82<br>18 | 12,682.82<br>18 | 2.0148 | 0.0000 | 12,733.19<br>23 |
| Maximum | <mark>1.8647</mark> | 21.1392 | 55.3120 | 0.1177 | 0.5303           | <mark>0.7710</mark> | 1.3012        | 0.0573            | 0.7710           | 0.8282      | 0.0000   | 12,682.82<br>18 | 12,682.82<br>18 | 2.0148 | 0.0000 | 12,733.19<br>23 |

|                      | ROG   | NOx   | со      | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|-------|-------|---------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 70.81 | 65.87 | -104.36 | 0.00 | 0.00             | 61.46           | 48.58         | 0.00              | 59.89            | 58.15          | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

#### 2.2 Overall Operational

#### Unmitigated Operational

|          | ROG             | NOx    | CO              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|----------|-----------------|--------|-----------------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Category |                 |        |                 |        | lb/c             | day             |               |                   |                  |             |          |                 | lb/c            | lay    |        |                 |
| Area     | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 |        | 2.3000e-<br>004 |
| Energy   | 0.0000          | 0.0000 | 0.0000          | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 0.0000          | 0.0000          | 0.0000 | 0.0000 | 0.0000          |
| Mobile   | 0.0000          | 0.0000 | 0.0000          | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000          | 0.0000          | 0.0000 |        | 0.0000          |
| Total    | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 | 0.0000 | 2.3000e-<br>004 |

#### Mitigated Operational

|          | ROG             | NOx    | CO              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|----------|-----------------|--------|-----------------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Category |                 |        |                 |        | lb/              | day             |               |                   |                  |             |          |                 | lb/d            | lay    |        |                 |
| Area     | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 |        | 2.3000e-<br>004 |
| Energy   | 0.0000          | 0.0000 | 0.0000          | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 0.0000          | 0.0000          | 0.0000 | 0.0000 | 0.0000          |
| Mobile   | 0.0000          | 0.0000 | 0.0000          | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000          | 0.0000          | 0.0000 | ,      | 0.0000          |
| Total    | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 | 0.0000 | 2.3000e-<br>004 |

|                      | ROG  | NOx  | со   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

#### 3.0 Construction Detail

#### **Construction Phase**

| Phase<br>Number | Phase Name       | Phase Type       | Start Date | End Date | Num Days<br>Week | Num Days | Phase Description |
|-----------------|------------------|------------------|------------|----------|------------------|----------|-------------------|
| 1               | Site Preparation | Site Preparation | 6/1/2018   | 6/1/2018 | 5                | 1        |                   |

Acres of Grading (Site Preparation Phase): 0.5

Acres of Grading (Grading Phase): 0

#### Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

#### OffRoad Equipment

| Phase Name       | Offroad Equipment Type    | Amount | Usage Hours | Horse Power | Load Factor |
|------------------|---------------------------|--------|-------------|-------------|-------------|
| Site Preparation | Concrete/Industrial Saws  | 1      | 1.00        | 4           | 0.73        |
| Site Preparation | Crushing/Proc. Equipment  | 1      | 10.00       | 750         | 0.78        |
| Site Preparation | Excavators                | 1      | 10.00       | 225         | 0.38        |
| Site Preparation | Excavators                | 1      | 10.00       | 230         | 0.38        |
| Site Preparation | Excavators                | 1      | 10.00       | 225         | 0.38        |
| Site Preparation | Excavators                | 1      | 10.00       | 186         | 0.38        |
| Site Preparation | Tractors/Loaders/Backhoes | 1      | 10.00       | 225         | 0.37        |
| Site Preparation | Tractors/Loaders/Backhoes | 1      | 10.00       | 225         | 0.37        |

#### Trips and VMT

| Phase Name       | Offroad Equipment | Worker Trip | Vendor Trip | Hauling Trip | Worker Trip | Vendor Trip | Hauling Trip | Worker Vehicle | Vendor        | Hauling       |
|------------------|-------------------|-------------|-------------|--------------|-------------|-------------|--------------|----------------|---------------|---------------|
|                  | Count             | Number      | Number      | Number       | Length      | Length      | Length       | Class          | Vehicle Class | Vehicle Class |
| Site Preparation | 9                 | 0.00        | 0.00        | 0.00         | 16.80       | 6.60        | 20.00        | LD_Mix         | HDT_Mix       | HHDT          |

#### **3.1 Mitigation Measures Construction**

Use Cleaner Engines for Construction Equipment

Clean Paved Roads

#### 3.2 Site Preparation - 2018

#### **Unmitigated Construction On-Site**

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O | CO2e            |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|-----|-----------------|
| Category      |        |         |         |        | lb/e             | day             |               |                   |                  |             |          |                 | lb/c            | day    |     |                 |
| Fugitive Dust |        |         |         |        | 0.5303           | 0.0000          | 0.5303        | 0.0573            | 0.0000           | 0.0573      |          |                 | 0.0000          |        |     | 0.0000          |
| Off-Road      | 6.3876 | 61.9283 | 27.0653 | 0.1177 |                  | 2.0005          | 2.0005        |                   | 1.9220           | 1.9220      |          | 12,682.82<br>18 | 12,682.82<br>18 | 2.0148 |     | 12,733.19<br>23 |
| Total         | 6.3876 | 61.9283 | 27.0653 | 0.1177 | 0.5303           | 2.0005          | 2.5308        | 0.0573            | 1.9220           | 1.9793      |          | 12,682.82<br>18 | 12,682.82<br>18 | 2.0148 |     | 12,733.19<br>23 |

#### 3.2 Site Preparation - 2018

#### Unmitigated Construction Off-Site

|          | ROG    | NOx    | со     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|-----|--------|
| Category |        |        |        |        | lb/d             | day             |               |                   |                  |             |          |           | lb/c      | lay    |     |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |

#### Mitigated Construction On-Site

|               | ROG    | NOx         | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O | CO2e            |
|---------------|--------|-------------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|-----|-----------------|
| Category      |        |             |         |        | lb/o             | day             |               |                   |                  |             |          |                 | lb/c            | lay    |     |                 |
| Fugitive Dust |        | ,<br>,<br>, | 1       |        | 0.5303           | 0.0000          | 0.5303        | 0.0573            | 0.0000           | 0.0573      |          |                 | 0.0000          |        |     | 0.0000          |
| Off-Road      | 1.8647 | 21.1392     | 55.3120 | 0.1177 |                  | 0.7710          | 0.7710        |                   | 0.7710           | 0.7710      | 0.0000   | 12,682.82<br>18 | 12,682.82<br>18 | 2.0148 |     | 12,733.19<br>23 |
| Total         | 1.8647 | 21.1392     | 55.3120 | 0.1177 | 0.5303           | 0.7710          | 1.3012        | 0.0573            | 0.7710           | 0.8282      | 0.0000   | 12,682.82<br>18 | 12,682.82<br>18 | 2.0148 |     | 12,733.19<br>23 |

#### 3.2 Site Preparation - 2018

#### Mitigated Construction Off-Site

|          | ROG    | NOx    | со     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|-----|--------|
| Category |        |        |        |        | lb/e             | day             |               |                   |                  |             |          |           | lb/c      | day    |     |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |

#### 4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

|             | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O | CO2e   |
|-------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|-----|--------|
| Category    |        |        |        |        | lb/e             | day             |               |                   |                  |             |          |           | lb/c      | lay    |     |        |
| Mitigated   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |
| Unmitigated | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 |     | 0.0000 |

#### 4.2 Trip Summary Information

|                           | Aver    | age Daily Trip Ra | ite    | Unmitigated | Mitigated  |
|---------------------------|---------|-------------------|--------|-------------|------------|
| Land Use                  | Weekday | Saturday          | Sunday | Annual VMT  | Annual VMT |
| User Defined Recreational | 0.00    | 0.00              | 0.00   |             |            |
| Total                     | 0.00    | 0.00              | 0.00   |             |            |

#### 4.3 Trip Type Information

|                           |            | Miles      |             |            | Trip %     |             |         | Trip Purpos | e %     |
|---------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------|
| Land Use                  | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted    | Pass-by |
| User Defined Recreational | 14.70      | 6.60       | 6.60        | 0.00       | 0.00       | 0.00        | 0       | 0           | 0       |

#### 4.4 Fleet Mix

| Land Use                  | LDA      | LDT1     | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | MCY      | SBUS     | MH       |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| User Defined Recreational | 0.489257 | 0.041257 | 0.220156 | 0.132626 | 0.025790 | 0.006586 | 0.027831 | 0.045583 | 0.001467 | 0.001229 | 0.006102 | 0.000783 | 0.001333 |

#### 5.0 Energy Detail

Historical Energy Use: N

#### 5.1 Mitigation Measures Energy

|                           | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|---------------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category                  |        |        |        |        | lb/d             | day             |               |                   |                  |             |          |           | lb/c      | lay    |        |        |
| NaturalGas<br>Mitigated   | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| NaturalGas<br>Unmitigated | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### 5.2 Energy by Land Use - NaturalGas

#### <u>Unmitigated</u>

|                              | NaturalGa<br>s Use | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|------------------------------|--------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Land Use                     | kBTU/yr            |        |        |        |        | lb/e             | day             |               |                   |                  |             |          |           | lb/c      | lay    |        |        |
| User Defined<br>Recreational | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        | -<br>-<br>-<br>-  | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total                        |                    | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### 5.2 Energy by Land Use - NaturalGas

Mitigated

|                              | NaturalGa<br>s Use | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|------------------------------|--------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Land Use                     | kBTU/yr            |        |        |        |        | lb/              | day             |               |                   |                  |             |          |           | lb/c      | day    |        |        |
| User Defined<br>Recreational | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total                        |                    | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### 6.0 Area Detail

6.1 Mitigation Measures Area

|             | ROG             | NOx    | со              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O             | CO2e            |
|-------------|-----------------|--------|-----------------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|-----------------|-----------------|
| Category    |                 |        |                 |        | lb/d             | day             |               |                   |                  |             |          |                 | lb/d            | day    |                 |                 |
| Mitigated   | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 |                 | 2.3000e-<br>004 |
| Unmitigated | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 | <br>-<br>-<br>- | 2.3000e-<br>004 |

#### 6.2 Area by SubCategory

#### <u>Unmitigated</u>

|                          | ROG             | NOx    | СО              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O | CO2e            |
|--------------------------|-----------------|--------|-----------------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|-----|-----------------|
| SubCategory              |                 |        |                 |        | lb/o             | day             |               |                   |                  |             |          |                 | lb/d            | day    |     |                 |
| Architectural<br>Coating | 0.0000          |        |                 |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          |                 | 0.0000          |        |     | 0.0000          |
| Consumer<br>Products     | 0.0000          |        |                 |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          |                 | 0.0000          |        |     | 0.0000          |
| Landscaping              | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 |     | 2.3000e-<br>004 |
| Total                    | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 |     | 2.3000e-<br>004 |

#### Mitigated

|                          | ROG             | NOx    | CO              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O | CO2e            |
|--------------------------|-----------------|--------|-----------------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|-----|-----------------|
| SubCategory              |                 |        |                 |        | lb/              | day             |               |                   |                  |             |          |                 | lb/d            | day    |     |                 |
| Architectural<br>Coating | 0.0000          |        |                 |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          |                 | 0.0000          |        |     | 0.0000          |
| Consumer<br>Products     | 0.0000          |        |                 |        | ,                | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          |                 | 0.0000          |        |     | 0.0000          |
| Landscaping              | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 |     | 2.3000e-<br>004 |
| Total                    | 1.0000e-<br>005 | 0.0000 | 1.0000e-<br>004 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          | 2.2000e-<br>004 | 2.2000e-<br>004 | 0.0000 |     | 2.3000e-<br>004 |

7.0 Water Detail

#### 7.1 Mitigation Measures Water

#### 8.0 Waste Detail

#### 8.1 Mitigation Measures Waste

#### 9.0 Operational Offroad

| Equipment Type | Number | Hours/Day | Days/Year | Horse Power | Load Factor | Fuel Type |
|----------------|--------|-----------|-----------|-------------|-------------|-----------|

#### **10.0 Stationary Equipment**

#### Fire Pumps and Emergency Generators

| Equipment Type | Number | Hours/Day | Hours/Year | Horse Power | Load Factor | Fuel Type |
|----------------|--------|-----------|------------|-------------|-------------|-----------|

#### **Boilers**

|                |        |                |                 |               | <b>_</b>  |
|----------------|--------|----------------|-----------------|---------------|-----------|
| Equipment Type | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type |
|                |        |                |                 |               |           |

#### **User Defined Equipment**

Equipment Type Number

#### 11.0 Vegetation

#### Summary of Greenhouse Gas Emissions and Changes in Carbon Sequestration over a 20-Year Management Cycle

| Emission Activity                                                 | <u>value</u> | <u>units</u>     | source/notes                    |
|-------------------------------------------------------------------|--------------|------------------|---------------------------------|
| Forest Vegetation Management Effects                              |              |                  |                                 |
| Loss in sequestration under no-treatment scenario due to wildfire | 21.4         | MT CO2e/acre     | CTC 2014:6                      |
| Increase in carbon sequestration under treatment scenario         | -17.4        | MT CO2e/acre     | CTC 2014:6; See Note 4          |
| Net gain in carbon sequestration over 20-year management cycle    | -38.8        | MT CO2e/acre     | summation                       |
| Forest Treatment Activities                                       |              |                  |                                 |
| Thinning equipment                                                | 4.2          | MT CO2e/day      | wksht: Thin Equip GHGs          |
| Truck hauling of merchantable logs                                | 1.3          | MT CO2e/day      | wksht: Hauling Emiss            |
| Truck hauling of chipped biomass                                  | 2.5          | MT CO2e/day      | wksht: Hauling Emiss            |
| Worker commute trips                                              | 0.1          | MT CO2e/day      | wksht: Worker Trips             |
| Subtotal                                                          | 8.1          | MT CO2e/day      | summation                       |
| Daily area treated, average                                       | 5.0          | acre/day         | wksht: Key Parameters           |
| GHGs per area treated                                             | 1.6          | MT CO2e/acre     | calculation                     |
| Net change per acre                                               | -37.2        | MT CO2e/acre     | summation                       |
| Operation of Biomass Power Facility                               | 41.6         | MT CO2e/acre     | wksht: Biomass Power Fac GHGs   |
| Displacement of Fossil Fuels for Electricity Generation           | -88.5        | MT CO2/acre      | wksht: Fossil Fuel Displacement |
| Treatment Area                                                    | 151.0        | acres            | wksht: Key Parameters           |
| GHGs from forest thinning equipment and haul trips                | 1,227        | MT CO2e          | ,<br>calculation                |
| Net GHGs during 20-year management cycle                          | -5,613       | MT CO2e/20-years | calculation                     |

#### Sources/Notes

- 1 California Tahoe Conservancy. 2014. 2014/2015 Project Application to the Department of Forestry and Fire Protection's Greenhouse Gas Reduction Fund for the North Tahoe Interagency Forest Health and Bioenergy Project (Project No. 14-GHG-FMP-01-0095-FR).
- 2 U.S. Forest Service. 2015. Forest Vegetation Simulator. Available at http://www.fs.fed.us/fmsc/fvs/. Accessed October 29, 2015. This simulator was used in the application for the North Tahoe Interagency Forest Health and Bioenergy Project (California Tahoe Conservancy 2014). (i.e., Source 1)
- 3 Hirt, Brian, Forestry Program Supervisor, California Tahoe Conservancy. October 27, 2015—e-mail to Adam Lewandowski, Senior Planner, Ascent Environmental regarding the number of acres of forest thinned per day and other parameters of thinning activity.
- 4 The modeling of the treatment scenario conducted with the Forest Vegetation Simulator (FVS) by USFS staff accounts for the carbon contained in biomass thinnings that are masticated and spread across the forest floor, and for the carbon that remains sequestered in wood products made from merchantable logs that are hauled out of the forest. The FVS modeling does not include any of the carbon benefit associated with the shadow effect, which is the idea that the neighboring forested area becomes more protected from catastrophic wildfire as well due to the fuels reduction on the treated forestland.

#### Summary of Maximum Daily Criteria Air Pollutants and Precursors in the Lake Tahoe Air Basin (lb/day)

| <u>Activity</u>                 | <u>ROG</u> | <u>NOx</u> | <u>PM10</u> | <u>PM2.5</u> | Source Worksheet                  |
|---------------------------------|------------|------------|-------------|--------------|-----------------------------------|
| Forest Treatment Activities     |            |            |             |              |                                   |
| Thinning Equipment              | 1.9        | 21.1       | 0.8         | 0.8          | wksht: Thin Equip CAPs            |
| Truck-Hauling Merchantable Logs | 0.0        | 1.3        | 0.1         | 0.0          | wksht: Hauling Act & Exh Emiss    |
| Truck-Hauling Chipped Biomass   | 0.1        | 2.3        | 0.1         | 0.1          | wksht: Hauling Act & Exh Emiss    |
| Worker Trips                    | 0.3        | 0.0        | 0.03        | 0.01         | wksht: Worker Trip Activity & Exh |
| Fugitive Road Dust              | _          | _          | 5.5         | 0.6          | wksht: Road Dust                  |
| Total                           | 2.2        | 24.8       | 6.5         | 1.4          | summation                         |
| PCAPCD Threshold                | 82         | 82         | 82          | _            | PCAPCD CEQA guide                 |

#### <u>Notes</u>

1 Forest thinning equipment will not be able to fully access Griff Unit 1 until the temporary crossing is installed. Thus, emissions associated with installation of the temporary crossing at Griff Creek would occur before forest thinning activity begins.

2 Placer County Air Pollution Control District. 2017 (June). CEQA Air Quality Handbook. Available: http://www.placerair.org/landuseandceqa. Accessed September 12, 2017.

### Key Parameters from Project Description

Treatment Area Daily area treated, average <u>value</u> 5.0

<u>units</u>

acres

acre/day

source/notes

project descripton Hirt, pers. comm. 2015; project description

151

#### **GHG Emissions from Thinning Equipment**

|                                               | <u>value</u> | <u>units</u> | <u>source</u>                |
|-----------------------------------------------|--------------|--------------|------------------------------|
| Total Average Daily Diesel Consumption        | 414.125      | gal/day      | wksht: Thin Equip Use & Fuel |
| CO2 emisson factor for diesel fuel combustion | 10.18175     | kg/gal       | Table 12.1 from Source 1     |
| CH4 emisson factor for diesel fuel combustion | 0.504        | g/gal        | Table 13.7 from Source 1     |
| N2O emisson factor for diesel fuel combustion | 0.224        | g/gal        | Table 13.7 from Source 1     |
| daily CO2 emissions                           | 4,217        | kg/day       | calculation                  |
| daily CH4 emissions                           | 209          | g/day        | calculation                  |
| daily N2O emissions                           | 93           | g/day        | calculation                  |
| mass conversion rate                          | 1,000        | kg/MT        | wksht: Unit Conversions      |
| mass conversion rate                          | 1,000,000    | g/MT         | wksht: Unit Conversions      |
| daily CO2 emissions                           | 4.22         | MT/day       | converson calculation        |
| daily CH4 emissions                           | 0.0002       | MT/day       | converson calculation        |
| daily N2O emissions                           | 0.00009      | MT/day       | converson calculation        |
| global warming potential of CH4               | 25           | CO2/CH4      | wksht: Unit Conversions      |
| global warming potential of N2O               | 298          | N2O/CH4      | wksht: Unit Conversions      |
| daily CO2-e emissions                         | 4.2          | MT/day       | summation                    |
|                                               |              |              |                              |

#### <u>Sources</u>

1 The Climate Registry. 2014. *General Reporting Protocol, Version 2.0*. Available: http://www.theclimateregistry.org/tools-resources/reporting-protocols/general-reporting-protocol/. Accessed October 19, 2015.

#### **Criteria Air Pollutant and Precursor Emissions from Thinning Equipment**

|         | Equipment   | Model Year/Make/Model        | Max. Daily Run<br>Time | Power<br>hp | EPA Emissions Tier Rating                                                                                    | Comperable Equipment<br>Type in CalEEMod | Load Factor<br>(%) |
|---------|-------------|------------------------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|
|         | Chain Saw   | 2014 Husky 565               | 1.0                    | 3.8         | NA                                                                                                           | Concrete/Industrial Saw                  | 100%               |
|         | Harvester   | 2011 John Deere 1270E        | 10.0                   | 225         | Tier 3                                                                                                       | Excavator                                | 38%                |
|         | Harvester   | 2007 Valmet 445              | 10.0                   | 230         | Tier 3                                                                                                       | Excavator                                | 38%                |
|         | Forwarder   | 2010 John Deere 1710D        | 10.0                   | 225         | Tier 4                                                                                                       | Excavator                                | 38%                |
|         | Skidder     | 2010 John Deere 648H         | 10.0                   | 225         | Tier 4                                                                                                       | Tractor/Loader/Backhoe                   | 37%                |
|         | Loader      | 2015 John Deere 2154         | 10.0                   | 225         | Tier 4+                                                                                                      | Tractor/Loader/Backhoe                   | 37%                |
|         | Masticator  | 2006 John Deere 200C LC      | 10.0                   | 186         | Tier 3                                                                                                       | Excavator                                | 38%                |
|         | Chipper     | 2011 Peterson 4310           | 10.0                   | 765         | Tier 4                                                                                                       | Crushing/Proc. Equipment                 | 78%                |
| Source: | wksht: Thin | wksht: Thin Equip Use & Fuel | wksht: Thin            | wksht: Thin | EPA's Nonroad                                                                                                | assumption based on types                | default value      |
|         | Equip Use & |                              | Equip Use &            | Equip Use & | Compression-Ignition                                                                                         | of activities performed; and             | in CalEEMod        |
|         | Fuel        |                              | Fuel                   | Fuel        | Engines - Exhaust Emission<br>Standards<br>@http://www3.epa.gov/o<br>taq/standards/nonroad/n<br>onroadci.htm | whether equipment is tracked vs. wheeled |                    |

#### **Maximum Daily Exhaust Emissions of CAPs and Precursors**

| Summary | ROG    | NOX     | PM10<br>Exhaust | PM2.5<br>Exhaust | Units  | Source               |
|---------|--------|---------|-----------------|------------------|--------|----------------------|
|         | 1.8647 | 21.1392 | 0.7710          | 0.7710           | lb/day | CalEEMod201<br>6.3.1 |

#### <u>Notes</u>

1 All the equipment is powered by diesel fuel, except for the chain saw, which uses a blend of gasoline and two-stork oil at a ratio of 1 gallon to 2.2 ounces, according to http://cdn.husqvarna.com/ddoc/HUSO/HUSO2011\_USen/HUSO2011\_USen\_1151378-95.pdf.

2 Emissions of fugitive PM10 and PM2.5 dust are estimated on wksht: Road Dust.

| struction Phase Off-Road Equipment Dust from Mate | erial Movement Demolition Trips And V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IT On-Road Fugitive Dust | Architect | ural Coatings   |             |      |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|-----------------|-------------|------|
| ase Name Site Preparation                         | Contraction of the second s | Next Phase >>            |           | Import csv      | Default     | Undo |
| Equipment Type                                    | Unit Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hours/Day                |           | HorsePower (HP) | Load Factor |      |
| Concrete/Industrial Saws                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 1         |                 | 4           | 0.7  |
| Crushing/Proc. Equipment                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 10        |                 | 750         | 0.7  |
| Excavators                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 10        |                 | 225         | 0.3  |
| Excavators                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 10        |                 | 230         | 0.3  |
| Excavators                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 10        |                 | 225         | 0.3  |
| Excavators                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 10        |                 | 186         | 0.3  |
| Tractors/Loaders/Backhoes                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 10        |                 | 225         | 0.3  |
| Tractors/Loaders/Backhoes                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 10        |                 | 225         | 0.3  |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |           |                 |             |      |

### Load Factors of Thinning Equipment

The load factors for the thinning equipment are based on the default load factors for similar equipment provided by CalEEMod V.2013.2

|         | Equipment            | Model Year/Make/Model     | hp         | Comperable Equipment<br>Type in CalEEMod | Load Factor (%)  |
|---------|----------------------|---------------------------|------------|------------------------------------------|------------------|
|         | Chain Saw            | 2014 Husky 565            | 3.8        | Concrete/Industrial Saw                  | 100%             |
|         | Harvester            | 2011 John Deere 1270E     | 225        | Excavator                                | 38%              |
|         | Harvester            | 2007 Valmet 445           | 230        | Excavator                                | 38%              |
|         | Forwarder            | 2010 John Deere 1710D     | 225        | Excavator                                | 38%              |
|         | Skidder              | 2010 John Deere 648H      | 225        | Tractor/Loader/Backhoe                   | 37%              |
|         | Loader               | 2015 John Deere 2154      | 225        | Tractor/Loader/Backhoe                   | 37%              |
|         | Masticator           | 2006 John Deere 200CLC    | 186        | Excavator                                | 38%              |
|         | Chipper              | 2011 Peterson 4310        | 765        | Crushing/Proc. Equipment                 | 78%              |
| Source: | wksht: raw data from | wksht: raw data from Thin | wksht: raw | assumption based on types                | Default value in |
|         | Thin Contractor      | Contractor                | data from  | of activities performed; and             | construction     |
|         |                      |                           | Thin       | tracked vs. wheeled                      | module of        |
|         |                      |                           | Contractor |                                          | CalEEMod         |

<u>Notes</u>

| 1 The | bad factor for the chain saw is conservaitvely assumed to be 100 | )%. |
|-------|------------------------------------------------------------------|-----|
|-------|------------------------------------------------------------------|-----|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Netruction Secure Orlando Secure Controlled Sec    |                            |                                |                       | operational       | Vegetation N      | 1itigation Reporting      | Help             |                 |             |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|-----------------------|-------------------|-------------------|---------------------------|------------------|-----------------|-------------|------------------|
| Instruction Place Off-Road Equipment Dust from Naternal Movement Demolition Trips And VMT On-Road Fugitive Dust Architectural Coatings  elect Construction Place Take Name Site Preparation Control of Place   | nstruction Phase Of-Road Equipment Due from Naterial Novement Demolition Trips And VHT On-Road Equiptive Duet   Architectural Coatings  <br>elect Constructor Phase Nee Name Se Preparation Und Amount Hours/Day TotresPower (NP) Load Factor Default Undo Equipment Type Und Amount Hours/Day TotresPower (NP) Load Factor Decaystore Decay |                            |                                |                       |                   |                   |                           |                  |                 | A           | Cascade Defaults |
| struction Phase Off-Road Equipment Dust from Material Novement   Denolition   Trips And VHT   On-Road Equiptive Dust   Architectural Coatings  <br>elect Construction Phase  Take Name Site Preparation Colleguignent Type Unit Amount Nours/Day HorsePower (HP) Coad Factor Equipment Type Unit Amount Nours/Day ForcePower (HP) Coad Factor Site Preparation Coad Factor Site Preparation Coad Factor Site Preparation Coad Factor Coad Fa | struction Phase Off-Kead Equipment Dust from Material Movement Denolition Trips And VMT On-Road Equipive Dust Architectural Coatings<br>delet Construction Phase Teacher Structure And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nstruction                 |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks  Rem   | Remarks Remark   | anterration Dhana          | Off-Poad Equipment             | form Makarial Massa   | ant Demolities    | Tring And MAT     | Los Based Euclidius Durit | . A section at s | unt Continue Ì  |             |                  |
| Site Preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Release Longer Lange Ste Preparation Company and these Ste Preparation Company and the Rhase Ste Previous Factor Company and the R   | istruction Phase           | Un Road Equipment   Dust       | from Material Movem   | ient   Demolition | n   Trips And VMI | On-Road Fugitive Dust     | r   Architectu   | Irai Coatings   |             |                  |
| Phase Name       Site Preparation       Import cs/       Default       Undo         Equipment Type       Unit Amount       Hours/Day       HorsePower (HP)       Load Factor         Excavators       1       8       97       0.3819         Tractors/Loaders/Backhoes       1       8       97       0.371         Crushing/Proc. Equipment       2       65       0.78         Crushing/Proc. Equipment       35       0.78       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phase Name Site Preparation Net Preparation Import cav Default Undo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Select Construction        | n Phase                        |                       |                   |                   |                           |                  |                 |             |                  |
| Import csv       Default       Undo         Equipment Type       Unit Amount       Hours/Day       HorseFower (HP)       Load Fador         Excavators       1       8       97       0.371         Tractors/Loaders/Backhees       1       8       97       0.371         Crushing/Proc. Equipment       1       85       0.78         *       1       8       97       0.371         *       1       8       97       0.371         *       1       8       97       0.371         *       1       8       97       0.371         *       1       8       97       0.371         *       1       8       97       0.371         *       1       8       97       0.371         *       1       8       97       0.371         *       1       8       97       0.371         *       1       8       97       0.371         *       1       1       1       1         *       1       1       1       1         *       1       1       1       1         *<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Import csv       Default       Unds         Equipment Type       Unit Amount       Hours/Day       HorseNower (HP)       Load Factor         Excavators       1       8       97       0.373         Crushing/Proc. Equipment       8       97       0.37         Crushing/Proc. Equipment       8       97       0.37         Tractory/Loaders/Backhoes       1       8       97       0.37         Crushing/Proc. Equipment       8       0.78       0.78         Tractory/Loaders/Backhoes       1       8       97       0.37         Crushing/Proc. Equipment       85       0.78       0.78         Tractory/Loaders/Backhoes       1       8       97       0.37         Crushing/Proc. Equipment       8       0.78       0.78         Tractory/Loaders/Backhoes       1       8       97       0.37         Tractory/Loaders/Backhoes       1       8       97       0.37         Crushing/Proc. Equipment       1       1       1       1       1         Horse/Hours       Hourse/Hours       Hourse/Hourse       Hourse/Hourse       1       1         Tractory/Loaders/Hours       Hourse/Hourse       Hourse/Hourse       Hourse/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phase Name                 | Site Preparation               |                       | << P              | Previous Phase    | Next Phase >>             |                  |                 |             |                  |
| Equipment Type       Unit Amount       Hours/Day       HorsePower (HP)       Load Factor         Excavators       1       8       97       0.3819         Tractors/Loaders/Backhoes       1       8       97       0.37         Cousting/Proc. Equipment       Image: Cousting Proc. Equipment       Image: Coustinge Proc. Equipment       Image: Cousti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Equipment Type       Unit Amount       Hours/Day       HorsePower (HP)       Load Factor         Excevators       1       8       97       0.3819         Tractors/Loaders/Backhoes       1       8       97       0.37         Crushing/Proc. Equipment       2       0       0       0         #       2       0       0       0       0         #       2       0       0       0       0       0         #       2       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           | _                | Import csv      | Default     | Undo             |
| Excavators       162       0.3819         Tractors/Loaders/Backhoes       1       8       97       0.37         Crushing/Proc. Equipment       85       0.78         *         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Excavators       162       0.3819         Tractors/Loaders/Backhoes       1       8       97       0.37         Crushing/Proc. Equipment       85       0.78         *             Remarks             These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Equipment                  | Туре                           |                       | Unit Amount       | t                 | Hours/Day                 | ł                | HorsePower (HP) | Load Facto  | r                |
| Tractors/Loaders/Backhoes       1       8       97       0.37         Crushing/Proc. Equipment       85       0.78         *             *              *               *                *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tractora/Leaders/Backhoes       1       8       97       0.37         Crushing/Proc. Equipment       85       0.78         *             *              *               *                *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Excavators                 |                                |                       |                   |                   |                           |                  |                 | 162         | 0.3819           |
| Clushing/Proc. Equipment       0.78         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Clushing/Proc. Equipment       0.78         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0         *       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tractors/Lo                | oaders/Backhoes                |                       | _                 |                   | 1                         | 8                |                 | 97          | 0.37             |
| Remarks         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CaIEEMod.       Next >>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Crushing/P                 | roc. Equipment                 |                       | <b>-</b>          |                   |                           |                  |                 | 85          | 0.78             |
| Kemarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.       Next >>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kemarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.       Image: Cale Cole Cale Cale Cale Cale Cale Cale Cale Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.       Image: CaleEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Kemarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.       Image: CaleEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remarks         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kemarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.       Image: Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here on the select                                                                              | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CaIEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Next >>         Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks     Next >>       These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.       Image: Cale Cale Cale Cale Cale Cale Cale Cale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <       Next >>         Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Next >>         Remarks       These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks     Next >>       These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.       Image: Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here only to show the default load factor used by Cale of the selected here on there on the selected here on the selected h                                                                              | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks       Next >>         These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| Remarks These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Remarks These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                |                       |                   |                   |                           |                  |                 |             |                  |
| These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | These equipment are selected here only to show the default load factor used by CalEEMod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                |                       |                   |                   |                           |                  |                 | << Previous | Next >>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks                    |                                |                       |                   |                   |                           |                  |                 | << Previous | Next >>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks                    | It are selected here only to s | show the default load | d factor used by  | CalEEMod.         |                           |                  |                 | << Previous | Next >>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks                    | nt are selected here only to s | show the default load | factor used by    | CalEEMod.         |                           |                  |                 | << Previous | Next >>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks<br>These equipment | at are selected here only to s | show the default load | d factor used by  | CalEEMod.         |                           |                  |                 | << Previous | Next >>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks<br>These equipment | nt are selected here only to s | show the default load | I factor used by  | CalEEMod.         |                           |                  |                 | << Previous | Next >>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks<br>These equipment | nt are selected here only to s | show the default load | l factor used by  | CalEEMod.         |                           |                  |                 | << Previous | Next >>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks<br>These equipmen  | nt are selected here only to s | show the default load | d factor used by  | CalEEMod.         |                           |                  |                 | <- Previous | Next >>          |

| <b>a</b> Start | Aus | Examples | PETERSON PACIFIC | CalEEMod.2013.2 | G14010103_03_005                      | Emission Calculations | Cabin Creek - Emissio |
|----------------|-----|----------|------------------|-----------------|---------------------------------------|-----------------------|-----------------------|
|                |     |          |                  |                 | · · · · · · · · · · · · · · · · · · · |                       |                       |

\* 🛱 🕼 📶 4:32 PM 10/22/2015 📼

#### **Thinning Equipment Use and Fuel Consumption**

| Equipment      | Model Year/Make/Model         | hp  | Avg. Daily Run<br>Time<br>(hr/day) | Max. Daily Run<br>Time<br>(hr/day) | Fuel<br>Consumption<br>(diesel) (gal/hr) | Avg. Daily Fuel<br>Consumption<br>(gal/day) | Max. Daily Fuel<br>Consumption<br>(gal/day) |
|----------------|-------------------------------|-----|------------------------------------|------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|
| Chain Saw      | 2014 Husky 565                | 3.8 | 0.5                                | 1.0                                | 0.25                                     | 0.125                                       | 0.25                                        |
| Harvester      | 2011 John Deere 1270E         | 225 | 9.0                                | 10.0                               | 3.6                                      | 32.4                                        | 36                                          |
| Harvester      | 2007 Valmet 445               | 230 | 9.0                                | 10.0                               | 8.5                                      | 76.5                                        | 85                                          |
| Forwarder      | 2010 John Deere 1710D         | 225 | 9.0                                | 10.0                               | 3.2                                      | 28.8                                        | 32                                          |
| Skidder        | 2010 John Deere 648H          | 225 | 9.0                                | 10.0                               | 4                                        | 36                                          | 40                                          |
| Loader         | 2015 John Deere 2154          | 225 | 9.0                                | 10.0                               | 3.8                                      | 34.2                                        | 38                                          |
| Masticator     | 2006 John Deere 200C LC       | 186 | 9.0                                | 10.0                               | 5.4                                      | 48.6                                        | 54                                          |
| Chipper        | 2011 Peterson 4310            | 765 | 9.0                                | 10.0                               | 17.5                                     | 157.5                                       | 175                                         |
| Source: wksht: | raw data from Thin Contractor |     |                                    |                                    |                                          |                                             |                                             |

Total Avg. Daily Fuel Consumption (gal/day) 414.125

#### <u>Notes</u>

1 The chain saw does not run on diesel fuel. Most chain saws are fueled with a mix of 1 gal gasoline and 2.2 oz. of two-stroke oil, according to http://cdn.husqvarna.com/ddoc/HUSO/HUSO2011\_USen/HUSO2011\_USen\_\_1151378-95.pdf. However, it is assumed the emissions associated with the consumption of fuel by the chain saw would be similar to the emissions associated with the combustion of diesel fuel. This

| Equipment List        |                                   |         |                                       |                     |  |
|-----------------------|-----------------------------------|---------|---------------------------------------|---------------------|--|
|                       |                                   |         |                                       |                     |  |
| EQUIPMENT             | YR/MAKE/MODEL                     | HP      | DAILY RUN TIME                        | FUEL USAGE          |  |
| Chain Saw             | 2014 Husky 565                    | 3.8     | Rarely used                           | 1 qt per 45 min.    |  |
| Harvester             | 2011 John Deere 1270E             | 225     | 8-10/hr                               | 3.6/hr              |  |
| Harvester             | 2007 Valmet 445                   | 230     | 8-10/hr                               | 8.5/hr              |  |
| Forwarder             | 2010 John Deere 1710D             | 225     | 8-10/hr                               | 3.2/hr              |  |
| Skidder               | 2010 John Deere 648H              | 225     | 8-10/hr                               | 4/hr                |  |
| Loader                | 2015 John Deere 2154              | 225     | 8-10/hr                               | 3.8/hr              |  |
| Masticator            | 2006 John Deere 200CLC            | 186     | 8-10/hr                               | 5.4/hr              |  |
| Chipper               | 2011 Peterson 4310                | 765     | 8-10/hr                               | 13-22/hr            |  |
| Yarder                | N/A                               | N/A     | N/A                                   | N/A                 |  |
|                       |                                   |         |                                       |                     |  |
|                       |                                   |         |                                       |                     |  |
| We would like to ha   | ve a lot of detail about the flee | et of e | quipment and crew used on a ty        | pical day of forest |  |
| thinning.             |                                   |         |                                       |                     |  |
| SEE ATTACHED SPE      | READSHEET (i.e., the above t      | table)  |                                       |                     |  |
| Make, model, (and r   | model year), and horsepower i     | rating  | of each piece of equipment (e.g       | ., chain saws,      |  |
| mechanical harveste   | er, skidder, cable yarder, forwa  | arder,  | loader, masticator, chipper)          |                     |  |
| Number of hours pe    | r day each equipment item op      | erates  | s per day                             |                     |  |
| Fuel consumption ra   | ate of each equipment item        |         |                                       |                     |  |
|                       |                                   |         |                                       |                     |  |
| Number of workers,    | not including the truck driver    | s who   | haul away merchantable logs or        | chipped biomass     |  |
| 6-8 depending on t    | the difficulty of the project     |         |                                       |                     |  |
| Number of full truck  | loads of chipped biomass hau      | led ou  | t of the forest each day              |                     |  |
| 8-12 depending on     | how many tons per acre            |         |                                       |                     |  |
| Number of truckload   | ds of merchantable logs haule     | d out o | of the forest each day                |                     |  |
| 4-8 depending on l    | how much volume per acre          |         |                                       |                     |  |
| Earliest start date w | hen thinning would occur eacl     | n year. | . (My guess is May 1 <sup>st</sup> .) |                     |  |
| Latest end date of th | ninning season. (My guess is O    | ctober  | r 15.)                                |                     |  |
| Could be as late as   | November 15th                     |         |                                       |                     |  |
|                       |                                   |         |                                       |                     |  |
| Source                |                                   |         |                                       |                     |  |
| Holland, Mary. Octo   | ber 16, 2015—e-mail to Brett      | Storey  | , Senior Management Analyst, F        | Placer County       |  |
| Planning Departmer    | nt (and forwarded to Austin Ke    | rr of A | Ascent Environmental) regarding       | parameters of the   |  |
| equipment fleet use   | d in forest thinning.             |         |                                       |                     |  |

## Truck Hauling Activity and Exhaust Emissions

|                                              | <u>value</u>             | <u>units</u>           | <u>source</u>   |               |                      |                 |
|----------------------------------------------|--------------------------|------------------------|-----------------|---------------|----------------------|-----------------|
| Truckloads of merchantable logs              |                          |                        |                 |               |                      |                 |
| Range, daily                                 | 4 to 8                   | trucks/day             | wksht: raw      | data from Tl  | nin Contracto        | r               |
| Average daily                                | 6                        | trucks/day             | wksht: raw      | data from Th  | nin Contracto        | r               |
| Max. daily                                   | 8                        | trucks/day             | wksht: raw      | data from Tl  | nin Contracto        | r               |
| Truckloads of chipped biomass fuel           |                          |                        |                 |               |                      |                 |
| Range, daily                                 | 8 to 12                  | trucks/day             | wksht: raw      | data from Tl  | nin Contracto        | r               |
| Average daily                                | 10                       | trucks/day             | wksht: raw      | data from Tl  | nin Contracto        | r               |
| Max. daily                                   | 12                       | trucks/day             | wksht: raw      | data from Tl  | nin Contracto        | r               |
| Total Max. daily truckloads                  | 20                       | truckloads/c           | day             | summatior     | n (value used        | on other wksht) |
|                                              |                          |                        |                 |               |                      |                 |
| Destination of merchantable logs             | Sierra Paci              | fic Industries         | in Quincy, C    | A             |                      |                 |
| Trip distance                                |                          |                        |                 |               |                      |                 |
| in all air basins                            | 85.7                     | miles/trip             | google map      | S             |                      |                 |
| portion in LTAB                              | 9.6                      | miles/trip             | Dollar Point    | t to Brockaw  | av Summit            |                 |
| portion in MCAB                              | 76.1                     | miles/trip             | Brockaway       | Summit to C   | )uincv               |                 |
| portion in SVAB                              | 0                        | miles/trip             | google man      |               |                      |                 |
| VMT associated with merchantable logs        | ,                        |                        | 8008101100      |               |                      |                 |
| Average daily                                | 1.028                    | VMT/day                | calculation     |               |                      |                 |
| Max daily                                    | 1,020                    | init, day              | carculation     |               |                      |                 |
| in all air basins                            | 1 371                    | VMT/day                | calculation     |               |                      |                 |
| nortion in LTAB                              | 154                      | VMT/day                | calculation     |               |                      |                 |
| portion in MCAB                              | 1 218                    | VMT/day                | calculation     |               |                      |                 |
| portion in SVAB                              | 1,210                    | VMT/day                | calculation     |               |                      |                 |
| portion in SVAB                              | 0                        | vivi1/uay              | calculation     |               |                      |                 |
| Destination of chinned biomass               | Sierra Paci <sup>.</sup> | fic Industries         | Lincoln CA      |               |                      |                 |
| Trin distance                                | Siciliaradi              |                        | , Enreoni, e, ( |               |                      |                 |
| Total                                        | 103                      | miles/trin             | google man      | nc .          |                      |                 |
| nortion in LTAB                              | 105                      | miles/trip             | Dollar Point    | t to summit ( | en route to So       | vulev Vallev    |
| portion in MCAB                              | 72.2                     | miles/trip             | summit to y     | vest side of  | Range 9 east         |                 |
| portion in SVAB                              | 10.2                     | miles/trip             | SPL in Lincol   | In to MCAR A  | nalige 5 east,       | Note 1          |
| VMT associated with chinned higmass          | 15.0                     | miles/ trip            | SFITTE          |               | Joundary, See        |                 |
|                                              | 2 060                    | Vcb/TMV                | calculation     |               |                      |                 |
| Max daily                                    | 2,000                    | vivii/uay              | calculation     |               |                      |                 |
| in all air basins                            | 2 472                    |                        | colculation     |               |                      |                 |
| iii dii dii Dasiiis                          | 2,472                    |                        | calculation     |               |                      |                 |
| portion in LTAB                              | 204                      |                        | calculation     |               |                      |                 |
| portion in MCAB                              | 1,/33                    |                        | calculation     |               |                      |                 |
| portion in SVAB                              | 475                      | vivi i / day           | calculation     |               |                      |                 |
| Haul Truck Emission Rates (running exhaust   | running loss             | hrako waro             | tiro waro)      |               |                      |                 |
| Hadi Huck Emission Rates (running exhaust, i | ROG                      |                        | PM10            | PM2 5         | CO2                  | units           |
| T6 instate construction beaut                | 0.115                    | 2 010                  | 0 172           | 0.088         | 1 227 705            | g/mile          |
| To instate constituction neavy               | Source: wk               | 5.910<br>// cht: On-Rd | oh Emiss Rat    | 0.000         | 1,227.795            | g/inite         |
|                                              | <u>Jource.</u> wr        |                        |                 | 103           |                      |                 |
|                                              | value                    | units                  | source          |               |                      |                 |
| mass conversion rate                         | <u>453 59</u>            | g/lb                   | wksht: Unit     | Conversions   | -                    |                 |
| mass conversion rate                         | 1 000 000                | g/10<br>g/MT           | wksht: Unit     | Conversions   | -                    |                 |
|                                              | 1,000,000                | g/ WT                  | WKSIIL. UIIIL   | COnversions   | <b>D</b>             |                 |
|                                              | ROG                      | NOx                    | PM10            | PM2 5         | 002                  |                 |
| Haul Truck Emissions (exhaust loss ware)     | lh/day                   | lb/day                 | <u>lh/dav</u>   | <u>lb/day</u> | <u>CO2</u><br>MT/day |                 |
| Merchantable logs                            | ib/ uay                  | ib/ day                | ib/uay          | 15/089        | lvii/day             |                 |
|                                              |                          |                        |                 |               | 12                   |                 |
| Average ually<br>Max daily                   |                          |                        |                 |               | 1.5                  |                 |
| iviax. ually<br>all air basins               | 0.2                      | 11 0                   |                 | 0.2           |                      |                 |
|                                              | 0.3                      | 1.0                    | 0.5             | 0.3           |                      |                 |
| III LIAB                                     | 0.0                      | 1.3                    | 0.1             | 0.0           |                      |                 |

| in MCAB         | 0.3         | 10.5      | 0.5 | 0.2 |     |
|-----------------|-------------|-----------|-----|-----|-----|
| in SVAB         | 0.0         | 0.0       | 0.0 | 0.0 |     |
| Chipped Biomass |             |           |     |     |     |
| Average daily   |             |           |     |     | 2.5 |
| Max. daily      |             |           |     |     |     |
| all air basins  | 0.6         | 21.3      | 0.9 | 0.5 |     |
| in LTAB         | 0.1         | 2.3       | 0.1 | 0.1 |     |
| in MCAB         | 0.4         | 14.9      | 0.7 | 0.3 |     |
| in SVAB         | 0.1         | 4.1       | 0.2 | 0.1 |     |
|                 | Source: cal | culations |     |     |     |

#### <u>Notes</u>

1 According to ARB, the western boundary of the MCAB in Placer County is the west side of Range 9 M.D.B. & M. According to the Auburn Quadrangle map (7.5 minute) from USGS this line crosses I-80 at approximately 38.961732°,-121.026029°.

#### Dust Emissions from Vehicle Travel on Unpaved Roadways during Forest Thinning

#### Trucks Hauling Merchantable Timber and Chipped Biomass

Emission Factor (EF) Calculation for Travel on Unpaved Roads

|                             | value                   | <u>units</u> | <u>source</u>           |
|-----------------------------|-------------------------|--------------|-------------------------|
| Truck Type                  | T6 instate constr heavy | NA           | EMFAC 2014              |
| gross vehicle weight rating | 26,000                  | lb           | EMFAC 2014              |
| mass conversion rate        | 2,000                   | lb/ton       | wksht: Unit Conversions |
| truck total weight          | 13.00                   | tons/truck   | conversion calculation  |

#### Emission Factor Calculation (Based on formula 1a in AP-42 Section 13.2.2., EPA 2006)

| Variables       | PM10 EF Calc | PM2.5 EF Calc | Unit                              | <u>Source</u>                                                    |
|-----------------|--------------|---------------|-----------------------------------|------------------------------------------------------------------|
| а               | 0.9          | 0.9           | constant                          | Source 1 Table 12.2.2.2 Constants for Equations 1a and 1b AD 42  |
| b               | 0.45         | 0.45          | constant                          | Source 1, Table 15.2.2-2 Constants for Equations 1a and 1b AP-42 |
| k               | 1.5          | 0.15          | constant (lbs/VMT)                | Section 15.2.2                                                   |
| S               | 4.3%         | 4.3%          | surface material silt content (%) | CalEEMod2013.2, Mobile module, Road Dust tab                     |
| W               | 13.00        | 13.00         | mean vehicle weight (tons)        | Calc'ed above based on truck size anticipated for project        |
| Emission Factor | 0.018        | 0.0018        | lb/VMT calculation                |                                                                  |

#### Maximum Daily VMT by Surface Type

| <u>value</u> | <u>units</u>                                          | <u>source</u>                                                                                                                                    |                                                                                                                                                                                    |
|--------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20           | truckloads/day                                        | wksht: Hauling Act & Exh Emis                                                                                                                    | SS                                                                                                                                                                                 |
| 2            | trip/truckoad                                         | one-ways                                                                                                                                         |                                                                                                                                                                                    |
| 5.0          | miles/trip                                            | assumption                                                                                                                                       |                                                                                                                                                                                    |
| 200          | VMT/day                                               | calculation                                                                                                                                      |                                                                                                                                                                                    |
|              |                                                       |                                                                                                                                                  |                                                                                                                                                                                    |
| <u>PM2.5</u> | <u>units</u> <u>source</u>                            |                                                                                                                                                  |                                                                                                                                                                                    |
| 0.4          | lb/day calc usin                                      | g emission factor                                                                                                                                |                                                                                                                                                                                    |
|              | value<br>20<br>2<br>5.0<br>200<br><u>PM2.5</u><br>0.4 | <u>value units</u><br>20 truckloads/day<br>2 trip/truckoad<br>5.0 miles/trip<br>200 VMT/day<br><u>PM2.5 units source</u><br>0.4 lb/day calc usin | valueunitssource20truckloads/daywksht: Hauling Act & Exh Emis2trip/truckoadone-ways5.0miles/tripassumption200VMT/daycalculationPM2.5unitssource0.4lb/daycalc using emission factor |

#### -.... rki Wa

| orker Trips         |                     |                  |              |                            |                                                                  |
|---------------------|---------------------|------------------|--------------|----------------------------|------------------------------------------------------------------|
| Emission Factor (E  | EF) Calculation for | r Travel on Unpa | ved Roads    |                            |                                                                  |
|                     |                     | value            | <u>units</u> | source                     |                                                                  |
| Vehicle Type        |                     | LDT2             | NA           | EMFAC 2014                 |                                                                  |
| gross vehicle weig  | ht rating           | 6,000            | lb           | EMFAC 2014                 |                                                                  |
| mass conversion r   | ate                 | 2,000            | lb/ton       | wksht: Unit Conversio      | ns                                                               |
| vehicle total weigh | ht                  | 3.00             | tons/veh     | conversion calculation     | 1                                                                |
| Emission Factor C   | alculation (Based   | on formula 1a i  | n AP-42 Sec  | tion 13.2.2., EPA 2006)    |                                                                  |
| Variables           | PM10 EF Calc        | PM2.5 EF Calc    | Unit         |                            | <u>Source</u>                                                    |
| а                   | 0.9                 | 0.9              | constant     |                            | Source 1 Table 12 2 2 2 Constants for Equations 12 and 1b AD 42  |
| b                   | 0.45                | 0.45             | constant     |                            | Source 1, Table 13.2.2-2 Constants for Equations 1a and 10 AP-42 |
| k                   | 1.5                 | 0.15             | constant (l  | bs/VMT)                    | Section 13.2.2                                                   |
| S                   | 4.3%                | 4.3%             | surface ma   | terial silt content (%)    | CalEEMod2013.2, Mobile module, Road Dust tab                     |
| W                   | 3.00                | 3.00             | mean vehio   | cle weight (tons)          | Calc'ed above based on truck size anticipated for project        |
| Emission Factor     | 0.009               | 0.0009           | lb/VMT       | calculation                |                                                                  |
| Maximum Daily V     | MT by Surface T     | уре              |              |                            |                                                                  |
|                     |                     |                  | value        | <u>units</u>               | source                                                           |
| Chipped Biomass     |                     |                  | 8            | truckloads/day             | wksht: Worker Trip Activity & Exh Emiss                          |
| daily trips per wor | rker                |                  | 2            | trips/worker               | one-ways                                                         |
| Avg. distance of tr | uck trip on unpav   | ed road          | 5.0          | miles/trip                 | assumption                                                       |
| Max. Daily worker   | VMT on unpaved      | l roads          | 80           | VMT/day                    | calculation                                                      |
|                     |                     | <u>PM10</u>      | <u>PM2.5</u> | <u>units</u> <u>source</u> |                                                                  |

| Worker Trip Fugitive Dust Emiss. | 1.9 | 0.2 | lb/day | calc using emission factor |
|----------------------------------|-----|-----|--------|----------------------------|
|----------------------------------|-----|-----|--------|----------------------------|



#### <u>Sources</u>

U.S. Environmental Protection Agency 2006 (November). Emission Factors & AP 42, Compilation of Air Pollutant Emission Factors-Section 13.2.2 Unpaved 1 Roads. Available http://www.epa.gov/ttnchie1/ap42/. Accessed May 5, 2012

### Worker Trip Exhaust Emissions

#### Commute Trips by Workers on Thinning Crew

|                                              | value       | units           | source       |               |              |              |                              |
|----------------------------------------------|-------------|-----------------|--------------|---------------|--------------|--------------|------------------------------|
| Number of workers on thinning crew           | value       | diffes          | <u></u>      |               |              |              |                              |
| Range, daily                                 | 6 to 8      | workers/day     | wksht: raw   | data from Th  | nin Contrac  | tor          |                              |
| Average daily                                | 7           | workers/day     | wksht: raw   | data from Th  | nin Contrac  | tor          |                              |
| Max. daily                                   | 8           | workers/day     | wksht: raw   | data from Tł  | nin Contrac  | tor          |                              |
| Trip rate for crew workers                   | 2           | trips/day       | assumption   | I             |              |              |                              |
| Avg. worker commute trip length              | 16.8        | miles/trip      | default wor  | ker trip leng | th in consti | ruction mo   | odule of CalEEMod V2013.2    |
| Daily VMT by crew workers                    |             |                 |              | shot belowy   |              |              |                              |
| Average daily                                | 235         | VMT/dav         | calculation  |               |              |              |                              |
| Max. daily                                   | 269         | VMT/day         | calculation  |               |              |              |                              |
| Mix of passenger vehicles used in employee   | commutes    |                 |              |               |              |              |                              |
| breakdown of passenger car VMT in Placer C   | County      | value           | units        | source        |              |              |                              |
| light duty autos - gasoline                  | •           | 4,326,004       | VMT/day      | wksht: On-    | Rd Veh Emi   | iss Rates    |                              |
| light duty autos - diesel                    |             | 45,333          | VMT/day      | wksht: On-    | Rd Veh Emi   | iss Rates    |                              |
| light duty trucks 1 - gasoline               |             | 407,924         | VMT/day      | wksht: On-    | Rd Veh Emi   | iss Rates    |                              |
| light duty trucks 1 - diesel                 |             | 465             | VMT/day      | wksht: On-    | Rd Veh Emi   | iss Rates    |                              |
| light duty trucks 2 - gasoline               |             | 2,046,941       | VMT/day      | wksht: On-    | Rd Veh Emi   | iss Rates    |                              |
| light duty trucks 2 - diesel                 |             | 3,114           | VMT/day      | wksht: On-    | Rd Veh Emi   | iss Rates    |                              |
| Total, all passenger vehicle types           |             | 6,829,781       | VMT/day      | summation     | I            |              |                              |
| relative portion of passenger car VMT by vel | n type      | value           | <u>units</u> | <u>source</u> |              |              |                              |
| light duty autos - gasoline                  |             | 63.3%           | %            | calculation   |              |              |                              |
| light duty autos - diesel                    |             | 0.7%            | %            | calculation   |              |              |                              |
| light duty trucks 1 - gasoline               |             | 6.0%            | %            | calculation   |              |              |                              |
| light duty trucks 1 - diesel                 |             | 0.01%           | %            | calculation   |              |              |                              |
| light duty trucks 2 - gasoline               |             | 30.0%           | %            | calculation   |              |              |                              |
| light duty trucks 2 - diesel                 |             | 0.05%           | %            | calculation   |              |              |                              |
| Total, all passenger vehicle types           |             | 100.0%          | %            | summation     | I            |              |                              |
| Emission Rates (running exhaust, running lo  | ss, brake w | are, tire ware) | )            |               |              |              |                              |
|                                              | ROG         | <u>NOx</u>      | <u>PM10</u>  | PM2.5         | <u>CO2</u>   | <u>units</u> | <u>source</u>                |
| light duty autos - gasoline                  | 0.298       | 0.065           | 0.046        | 0.019         | 317.264      | g/mile       | wksht: On-Rd Veh Emiss Rates |
| light duty autos - diesel                    | 0.028       | 0.190           | 0.063        | 0.035         | 275.596      | g/mile       | wksht: On-Rd Veh Emiss Rates |
| light duty trucks 1 - gasoline               | 1.267       | 0.155           | 0.047        | 0.020         | 371.344      | g/mile       | wksht: On-Rd Veh Emiss Rates |
| light duty trucks 1 - diesel                 | 0.192       | 1.152           | 0.188        | 0.155         | 369.773      | g/mile       | wksht: On-Rd Veh Emiss Rates |
| light duty trucks 2 - gasoline               | 0.542       | 0.107           | 0.046        | 0.019         | 428.666      | g/mile       | wksht: On-Rd Veh Emiss Rates |
| light duty trucks 2 - diesel                 | 0.016       | 0.070           | 0.051        | 0.024         | 347.466      | g/mile       | wksht: On-Rd Veh Emiss Rates |
| Composite emiss rates - all pass vehicles    | 0.427       | 0.084           | 0.047        | 0.019         | 353.623      | g/mile       | Sumproduct calculation       |
|                                              | value       | <u>units</u>    | source       |               |              |              |                              |
| mass conversion rate                         | 453.59      | g/lb            | wksht: Unit  | Conversions   | 5            |              |                              |
| mass conversion rate                         | 1,000,000   | g/MT            | wksht: Unit  | Conversions   | 5            |              |                              |
| Worker Commute Emissions (exhaust, loss,     | ware)       |                 |              |               |              |              |                              |
|                                              | ROG         | <u>NOx</u>      | <u>PM10</u>  | <u>PM2.5</u>  | <u>CO2</u>   |              |                              |
|                                              | lb/day      | lb/day          | lb/day       | lb/day        | MT/day       |              |                              |
| Average daily                                |             |                 |              |               | 0.1          |              |                              |
| Max. daily                                   | 0.3         | 0.0             | 0.03         | 0.01          |              |              |                              |
|                                              | Source: cal | culations       |              |               |              |              |                              |

### Running Exhaust Emission Rates for On-Road Vehicles

Source: These emission rates were provided by the California Air Resources Board's Mobile Source Emissions Inventory (EMFAC2014), which is available at http://www.arb.ca.gov/emfac/2014/. It is assumed that emission rates for vehicles in the portion of Placer County that is also part of the Lake Tahoe Air Basin are also representative of emission rates in other mountainous areas of Placer County and Nevada County.

EMFAC2014 (v1.0.7) Emission Rates Model Year: Aggregated Region Type: County Speed: Aggregated **Region:** Placer Calendar Year: 2018 Season: Summer Vehicle Classification: EMFAC2011 Categories Units: miles/day for VMT, trips/day for Trips, g/mile for RUNEX, PMBW and PMTW, g/trip for STREX, HTSK and RUNLS, g/vehicle/day for IDLEX, RESTL and DIURN

| VehClass                      | Fuel | Population | VMT       | Trips     | ROG_RUNEX | ROG_IDLEX | ROG_STREX | ROG_RUNLOSS | NOx_RUNEX | NOx_IDLEX | NOx_STREX | CO2_RUNEX | CO2_IDLEX | CO2_STREX | PM10_RUNEX | PM10_IDLEX | PM10_STREX | PM10_PMTW | PM10_PMBW | PM2_5_RUNEX | PM2_5_IDLEX | PM2_5_STREX | PM2_5_PMTW | PM2_5_PMBW |
|-------------------------------|------|------------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-------------|-------------|-------------|------------|------------|
|                               |      |            | VMT/day   | trips/day | g/mile    | g/veh/day | g/trip    | g/mile      | g/mile    | g/veh/day | g/trip    | g/mile    | g/veh/day | g/trip    | g/mile     | g/veh/day  | g/trip     | g/mile    | g/mile    | g/mile      | g/veh/day   | g/trip      | g/mile     | g/mile     |
| LDA                           | GAS  | 115,859    | 4,326,004 | 729,370   | 0.018     | 0.000     | 0.114     | 0.280       | 0.065     | 0.000     | 0.118     | 317.264   | 0.000     | 66.389    | 0.002      | 0.000      | 0.002      | 0.008     | 0.037     | 0.002       | 0.000       | 0.002       | 0.002      | 0.016      |
| LDA                           | DSL  | 1,165      | 45,333    | 7,151     | 0.028     | 0.000     | 0.000     | 0.000       | 0.190     | 0.000     | 0.000     | 275.596   | 0.000     | 0.000     | 0.018      | 0.000      | 0.000      | 0.008     | 0.037     | 0.017       | 0.000       | 0.000       | 0.002      | 0.016      |
| LDT1                          | GAS  | 11,906     | 407,924   | 71,979    | 0.047     | 0.000     | 0.290     | 1.220       | 0.155     | 0.000     | 0.242     | 371.344   | 0.000     | 78.082    | 0.003      | 0.000      | 0.004      | 0.008     | 0.037     | 0.002       | 0.000       | 0.004       | 0.002      | 0.016      |
| LDT1                          | DSL  | 25         | 465       | 120       | 0.192     | 0.000     | 0.000     | 0.000       | 1.152     | 0.000     | 0.000     | 369.773   | 0.000     | 0.000     | 0.143      | 0.000      | 0.000      | 0.008     | 0.037     | 0.137       | 0.000       | 0.000       | 0.002      | 0.016      |
| LDT2                          | GAS  | 51,845     | 2,046,941 | 325,651   | 0.023     | 0.000     | 0.149     | 0.519       | 0.107     | 0.000     | 0.215     | 428.666   | 0.000     | 90.043    | 0.002      | 0.000      | 0.002      | 0.008     | 0.037     | 0.001       | 0.000       | 0.002       | 0.002      | 0.016      |
| LDT2                          | DSL  | 64         | 3,114     | 412       | 0.016     | 0.000     | 0.000     | 0.000       | 0.070     | 0.000     | 0.000     | 347.466   | 0.000     | 0.000     | 0.007      | 0.000      | 0.000      | 0.008     | 0.037     | 0.006       | 0.000       | 0.000       | 0.002      | 0.016      |
| LDA                           | ELEC | 1,365      | 67,186    | 8,830     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000     | 0.000     | 0.000     | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.008     | 0.037     | 0.000       | 0.000       | 0.000       | 0.002      | 0.016      |
| LDT1                          | ELEC | 8          | 260       | 49        | 0.000     | 0.000     | 0.000     | 0.000       | 0.000     | 0.000     | 0.000     | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.008     | 0.037     | 0.000       | 0.000       | 0.000       | 0.002      | 0.016      |
| T6 instate construction heavy | DSL  | 81         | 5,763     | 0         | 0.115     | 0.097     | 0.000     | 0.000       | 3.910     | 7.408     | 0.000     | 1227.795  | 747.752   | 0.000     | 0.031      | 0.023      | 0.000      | 0.012     | 0.130     | 0.030       | 0.022       | 0.000       | 0.003      | 0.056      |

EMFAC2014 only provides idling exhaust emissions for large trucks, but not for passenger vehicles.

EMFAC2014 (v1.0.7) Emission Rates Region Type: County Region: Placer Calendar Year: 2018 Season: Summer Vehicle Classification: EMFAC2011 Categories Units: miles/day for VMT, trips/day for Trips, g/mile for RUNEX, PMBW and PMTW, g/trip for STREX, HTSK and RUNLS, g/vehicle/day for IDLEX, RESTL and DIURN

| Region | CalYr VehClass                     | MdlYr      | Speed      | Fuel | Population  | VMT         | Trips         | ROG_RUNEX   | ROG_IDLEX | ROG_STREX     | ROG_HOTSOAK | ROG_RUNLOSS | ROG_RESTLOSS | ROG_DIURN   | TOG_RUNEX     | TOG_IDLEX  | TOG_STREX     | TOG_HOTSOAK   | TOG_RUNLOSS | TOG_RESTLOSS | TOG_DIURN   |
|--------|------------------------------------|------------|------------|------|-------------|-------------|---------------|-------------|-----------|---------------|-------------|-------------|--------------|-------------|---------------|------------|---------------|---------------|-------------|--------------|-------------|
| Placer | 2018 LDA                           | Aggregated | Aggregated | GAS  | 115859.4398 | 4326003.57  | 5 729370.2259 | 0.01787673  |           | 0 0.114019078 | 0.175794719 | 0.27982443  | 0.602841796  | 0.895225063 | 3 0.025564776 |            | 0 0.12480232  | 3 0.175794719 | 0.279824431 | 0.602841796  | 0.895225063 |
| Placer | 2018 LDA                           | Aggregated | Aggregated | DSL  | 1165.276078 | 45333.0206  | 5 7151.405039 | 0.028394329 |           | 0 0           | C           | (           | ) C          | (           | 0 0.032325056 |            | 0 0           | D C           | 0           | 0            | 0           |
| Placer | 2018 LDA                           | Aggregated | Aggregated | ELEC | 1365.022325 | 67185.65723 | 8 8829.904002 | 0           |           | 0 0           | 0.004883985 | (           | 0.032078743  | 0.067191344 | 4 0           |            | 0 0           | 0.004883985   | 0           | 0.032078743  | 0.067191344 |
| Placer | 2018 LDT1                          | Aggregated | Aggregated | GAS  | 11906.12117 | 407923.669  | 7 71978.87194 | 0.046614147 |           | 0 0.289711599 | 0.455246283 | 1.220278334 | 1.565066247  | 2.550951444 | 4 0.065394915 |            | 0 0.317011072 | 0.455246283   | 1.220278334 | 1.565066247  | 2.550951444 |
| Placer | 2018 LDT1                          | Aggregated | Aggregated | DSL  | 25.11829794 | 465.219539  | 7 120.273686  | 0.191743803 |           | 0 0           | C           | (           | ) C          | (           | 0 0.218287572 |            | 0 0           | D C           | 0           | 0            | 0           |
| Placer | 2018 LDT1                          | Aggregated | Aggregated | ELEC | 8.031107315 | 260.337363  | 5 49.40504331 | 0           |           | 0 0           | 0.004883985 | (           | 0.032765017  | 0.068373973 | 3 0           |            | 0 0           | 0.004883985   | 0           | 0.032765017  | 0.068373973 |
| Placer | 2018 LDT2                          | Aggregated | Aggregated | GAS  | 51844.5125  | 2046941.340 | 5 325651.3021 | 0.02318819  |           | 0 0.149175997 | 0.197433628 | 0.518751039 | 0.751858035  | 1.06779827  | 7 0.033355561 |            | 0 0.163295449 | 9 0.197433628 | 0.518751039 | 0.751858035  | 1.06779827  |
| Placer | 2018 LDT2                          | Aggregated | Aggregated | DSL  | 64.48017181 | 3113.93946  | 7 412.3985354 | 0.016283967 |           | 0 0           | C           | (           | ) (          |             | 0 0.018538213 |            | 0 0           | D C           | 0           | 0            | 0           |
| Placer | 2018 T6 instate construction heavy | Aggregated | Aggregated | DSL  | 81.4976181  | 5763.23659  | 5 0           | 0.1154889   | 0.0973900 | )39 C         | C           | (           | ) (          |             | 0 0.131475321 | 0.11087114 | 16 (          | D C           | 0           | 0            | 0           |

| CO_RUNEX CO   | D_IDLEX   | CO_STREX      | NOx_RUNEX     | NOx_IDLEX  | NOx_STREX    | CO2_RUNEX      | CO2_IDLEX   | CO2_STREX     | PM10_RUNEX  | PM10_IDLEX  | PM10_STREX  | PM10_PMTW   | PM10_PMBW   | PM2_5_RUNEX | PM2_5_IDLEX | PM2_5_STREX | PM2_5_PMTW  | PM2_5_PMBW  | SOx_RUNEX   | SOx_IDLEX  | SOx_STREX   |
|---------------|-----------|---------------|---------------|------------|--------------|----------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|
| 0.951875301   |           | 0 1.600477113 | 3 0.065081192 |            | 0 0.1183598  | 31 317.264     | (           | 0 66.38895904 | 0.001648115 | 0           | 0.00243636  | 0.008000002 | 0.036750011 | 0.001515994 | 0           | 0.002241979 | 0.002000001 | 0.015750005 | 0.003182533 |            | 0.000691569 |
| 0.28045292    |           | 0             | 0.190495936   |            | 0            | 0 275.5962949  | (           | ) 0           | 0.017755172 | 0           | 0           | 0.008000002 | 0.036750011 | 0.016987091 | 0           | 0           | 0.002000001 | 0.015750005 | 0.002631013 |            | 0 0         |
| 0             |           | 0             | 0 0           |            | 0            | 0 0            | (           | ) 0           | 0           | 0           | 0           | 0.008000002 | 0.036750011 | 0           | 0           | 0           | 0.002000001 | 0.015750005 | 0           |            | 0 0         |
| 2.096086216   |           | 0 3.95187957  | 5 0.155057483 |            | 0 0.24198704 | 41 371.3441491 | (           | 78.08221837   | 0.002629726 | 0           | 0.004270447 | 0.008000002 | 0.036750011 | 0.002421163 | 0           | 0.003935943 | 0.002000001 | 0.015750005 | 0.003741462 |            | 0.000851    |
| 1.089281886   |           | 0             | 0 1.151550528 |            | 0            | 0 369.7731871  | (           | ) 0           | 0.142937289 | 0           | 0           | 0.008000002 | 0.036750011 | 0.136753885 | 0           | 0           | 0.002000001 | 0.015750005 | 0.003530084 |            | 0 0         |
| 0             |           | 0             | 0 C           |            | 0            | 0 0            | (           | ) 0           | 0           | 0           | 0           | 0.008000002 | 0.036750011 | 0           | 0           | 0           | 0.002000001 | 0.015750005 | 0           |            | 0 0         |
| 1.238731125   |           | 0 2.15559615  | 6 0.106801061 |            | 0 0.21461221 | L4 428.6657789 | (           | 90.04325558   | 0.001564322 | 0           | 0.002291726 | 0.008000002 | 0.036750011 | 0.001438908 | 0           | 0.002108878 | 0.002000001 | 0.015750005 | 0.004299246 |            | 0.000937556 |
| 0.133433125   |           | 0             | 0.069755489   |            | 0            | 0 347.4658515  | (           | ) 0           | 0.006580705 | 0           | 0           | 0.008000002 | 0.036750011 | 0.006296026 | 0           | 0           | 0.002000001 | 0.015750005 | 0.003317124 |            | 0 0         |
| 0.345534352 0 | .60580146 | 55 (          | 0 3.910327858 | 7.40813726 | 3            | 0 1227.794934  | 747.7522694 | 1 O           | 0.030917442 | 0.022723285 | 0           | 0.012000003 | 0.130340037 | 0.029579967 | 0.021740286 | 0           | 0.003000001 | 0.055860016 | 0.011713738 | 0.00713390 | 5 0         |

#### **Unit Conversion Rates**

#### Global Warming Potential (rates)

|                             | <u>CO2</u>           | <u>CH4</u>         | <u>N2O</u>         | <u>units</u>           |
|-----------------------------|----------------------|--------------------|--------------------|------------------------|
| global warming potential    | 1                    | 25                 | 298                | unitless               |
| Source: Table B-1—Global V  | /arming Potential Fa | actors for Require | d Greenhouse G     | ases (100-YearTime     |
| Horizon) from 40 CFR 98 (pa | ge 722-723), as requ | uired by ARB's Re  | gulation for the I | Mandatory Reporting of |
| GHGs (http://www.theclima   | teregistry.org/wp-   |                    |                    |                        |
| content/uploads/2014/11/2   | 014.06.30_GRP_2.0    | _Updates_and_C     | larifications1.pd  | f)                     |

#### **Mass Conversion Rates**

| value                    | <u>units</u> | source                                 |
|--------------------------|--------------|----------------------------------------|
| 1,000                    | kg/MT        | onlineconversion.com/weight_common.htm |
| 1,000,000                | g/MT         | onlineconversion.com/weight_common.htm |
| 2,000                    | lb/ton       | onlineconversion.com/weight_common.htm |
| 2,204.62                 | lb/MT        | onlineconversion.com/weight_common.htm |
| 453.59                   | g/lb         | onlineconversion.com/weight_common.htm |
| 1.1023                   | ton/MT       | onlineconversion.com/weight_common.htm |
| 2204.62                  | lb/MT        | onlineconversion.com/weight_common.htm |
| Distance/Length<br>5,280 | ft/mile      | onlineconversion.com/length.htm        |
| <b>Area</b> 43,560       | sq ft/acre   | onlineconversion.com/area.htm          |
| Power                    |              |                                        |
| 1.341022092              | hp/kW        | onlineconversion.com/power.htm         |

# **Appendix D**

**Species List** 

| Table D-1 Special-Status Species Evaluated for the Dollar Creek Forest Health and Blomass Project |                  |                       |                                                                                                                                                                               |                                                                                                                                                                                       |  |
|---------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                   | Regulator        | y Status <sup>1</sup> |                                                                                                                                                                               |                                                                                                                                                                                       |  |
| Species                                                                                           | Federal/<br>TRPA | State/<br>Other       | Habitat Associations                                                                                                                                                          | Potential to Occur or Be Affected in the Project Area <sup>2</sup>                                                                                                                    |  |
| Botanical Species                                                                                 |                  | -                     | -                                                                                                                                                                             |                                                                                                                                                                                       |  |
| Galena Creek rockcress<br>Arabis rigidissima var. demota                                          | SI               | CRPR-1B               | Rocky areas along edges of conifer and/or aspen stands.<br>Usually found on moderate to steep northerly aspects in<br>moisture accumulating microsites; 7,400–8,400 ft. elev. | Low. No known occurrences in the project area. The project area is located below the elevation range of this species. Suitable upper montane habitat not present in the project area. |  |
| Threetip sagebrush<br>Artemisia tripartita ssp. tripartita                                        | _                | CRPR-2B               | Openings in upper montane coniferous forest, on rocky/volcanic soils; 7,200–8,530 ft. elev.                                                                                   | <b>Low.</b> No known occurrences in the project area. Suitable upper montane habitat not present in the project area.                                                                 |  |
| Tiehm's rock cress<br>Boechera tiehmii                                                            | _                | CRPR-1B               | Granitic alpine boulder and rock fields; 9,700 to 12,000 ft. elev.                                                                                                            | <b>None.</b> The project area is located below the elevation range of this species; no alpine rocky habitats present.                                                                 |  |
| Tulare rockcress<br>Boechera tularensis                                                           | _                | CRPR-1B               | Bogs and fens, meadows and seeps, marshes and swamps<br>in lower montane and upper montane coniferous forest;<br>4,200 to 10,700 ft. elev.                                    | None. No known occurrences in the project vicinity. Suitable alpine and upper montane habitat not present in the project area.                                                        |  |
| Upswept moonwort<br>Botrychium ascendens                                                          | _                | CRPR-2B               | Wet or moist soils, mostly of meadows and riparian areas in lower montane coniferous forest; 5,000–10,200 ft. elev.                                                           | <b>Moderate.</b> No known occurrences in the project area. Potential habitat is present in montane riparian, freshwater wetland, and stream habitat.                                  |  |
| Scalloped moonwort<br>Botrychium crenulatum                                                       | _                | CRPR-2B               | Bogs, fens, meadows, and seeps, in upper montane coniferous forest, primarily moist meadows near creeks; 4,000–11,000 ft. elev.                                               | <b>Moderate.</b> No known occurrences in the project area. Potential habitat is present in montane riparian, freshwater wetland, and stream habitat.                                  |  |
| Common moonwort<br>Botrychium lunaria                                                             | _                | CRPR-2B               | Wet or moist soils, mostly of meadows, seeps, and springs<br>in subalpine and upper montane coniferous forest; 6,400–<br>11,200 ft. elev.                                     | <b>Moderate.</b> No known occurrences in the project area. Potential habitat is present in montane riparian, freshwater wetland, and stream habitat.                                  |  |
| Mingan moonwort<br>Botrychium minganense                                                          | _                | CRPR-2B               | Wet or moist soils, mostly of riparian areas, small streams,<br>or fens in upper and lower montane coniferous forest;<br>5,000–10,000 ft. elev.                               | <b>Moderate.</b> No known occurrences in the project area. Potential habitat is present in montane riparian, freshwater wetland, and stream habitat.                                  |  |
| Western goblin<br>Botrychium montanum                                                             | _                | CRPR-2B               | Wet or moist soils, mostly of meadows and seeps in upper and lower montane coniferous forest; 5,000–7,000 ft. elev.                                                           | <b>Moderate.</b> No known occurrences in the project area. Potential habitat is present in montane riparian, freshwater wetland, and stream habitat.                                  |  |
| Davy's sedge<br>Carex davyi                                                                       | -                | CRPR-1B               | Subalpine and upper montane coniferous forests; 4,800-10,600 ft. elev.                                                                                                        | Moderate. Could occur in coniferous forest habitat in the project area.                                                                                                               |  |
| Woolly-fruited sedge<br>Carex lasiocarpa                                                          | -                | CRPR-2B               | Bogs and fens, and lake margin marshes and swamps at elevations; of 1,980-6,850 ft. elev.                                                                                     | Low. No suitable habitat within the project area.                                                                                                                                     |  |

#### Changed Chatter Changing Further for the Dallay Areal, Farent Haulth and Diamage Drainet Table D 1

|                                                                  | Regulatory Status <sup>1</sup> |                 |                                                                                                                                                                                                                      |                                                                                                                                                                     |
|------------------------------------------------------------------|--------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species                                                          | Federal/<br>TRPA               | State/<br>Other | Habitat Associations                                                                                                                                                                                                 | Potential to Occur or Be Affected in the Project Area <sup>2</sup>                                                                                                  |
| Mud sedge<br>Carex limosa                                        | -                              | CRPR-2B         | Upper montane coniferous forest, lower montane<br>coniferous forest, bogs and fens, meadows and seeps,<br>marshes and swamps (in floating bogs and soggy<br>meadows, often at edges of lakes); 4,000–9,000 ft. elev. | Low. Boggy habitats preferred by this species are not present.                                                                                                      |
| Tahoe draba<br>Draba asterophora var. asterophora                | SI                             | CRPR-1B         | Alpine boulder and rock fell field in rock crevices and open granite talus slopes, subalpine coniferous forest, usually on northeast-facing slopes; 8,200–10,500 ft. elev.                                           | <b>None.</b> No documented occurrences in vicinity of project area. Project area is located below the elevation range of this species. No suitable habitat present. |
| Cup Lake draba<br>Draba asterophora var. macrocarpa              | SI                             | CRPR-1B         | Subalpine coniferous forest on steep, gravelly or rocky slopes; 8,200–9,200 ft. elev.                                                                                                                                | <b>None.</b> No documented occurrences in vicinity of project area. project area is located below the elevation range of this species. No suitable habitat present. |
| Mineral King draba<br>Draba cruciate                             | _                              | CRPR-1B         | Subalpine coniferous forest, on gravely soils, 8,200 – 10,900 ft elev.                                                                                                                                               | <b>None.</b> No documented occurrences in vicinity of project area. project area is located below the elevation range of this species. No suitable habitat present. |
| Starved daisy<br>Erigeron miser                                  | -                              | CRPR-2B         | Cracks or clefts in granite outcrops; 6,000–8,500 ft. elev.                                                                                                                                                          | <b>Low.</b> No known occurrences in the project area. Suitable rocky outcrop microsites within upper montane habitat are limited.                                   |
| Jack's wild buckwheat<br>Eriogonum luteolum var. saltuarium      | -                              | CRPR-1B         | Great Basin scrub, upper montane coniferous forest on sandy, granitic soils, 5,600 -7,900 ft. elev.                                                                                                                  | <b>Low.</b> No known occurrences in project vicinity. Suitable upper montane habitat not present on site.                                                           |
| Donner Pass buckwheat<br>Eriogonum umbellatum var.<br>torreyanum | -                              | CRPR-1B         | Highly erosive, shallow, rocky volcanic soils with sparse vegetation; 6,000–8,600 ft. elev.                                                                                                                          | Low. No known occurrences in the project area. Suitable upper montane habitat not present on site.                                                                  |
| American manna grass<br>Glyceria grandis                         | -                              | CRPR-2          | Bog, fens, meadows, seeps, marshes, and swamps; streambanks and lake margins; 50-6,500 ft. elev.                                                                                                                     | Low. Potential habitat is limited in the project area.                                                                                                              |
| Blandow's bog moss<br>Helodium blandowii                         | _                              | CRPR-2B         | Bogs and fens with calcareous groundwater in subalpine coniferous forest; 5,000-9,500 ft. elev.                                                                                                                      | Low. No known occurrences in the project vicinity. No suitable habitat present in the project area.                                                                 |
| Short-leaved hulsea<br>Hulsea brevifolia                         | -                              | CRPR-1B         | Upper and lower montane coniferous forest, primarily red fir forests, on volcanic or granitic gravel or sand, or on slate; 4,200-10,500 ft. elev.                                                                    | <b>Moderate.</b> No known occurrences in the project vicinity. However, potential habitat exists in conifer forest in the project area.                             |

| Table D-1 | Special-Status Species Evaluated for the Dollar Creek Forest Health and Biomass Project |
|-----------|-----------------------------------------------------------------------------------------|
|-----------|-----------------------------------------------------------------------------------------|

|                                                           | Regulatory Status <sup>1</sup> |                 |                                                                                                                                                                                                               |                                                                                                                                                                                              |
|-----------------------------------------------------------|--------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species                                                   | Federal/<br>TRPA               | State/<br>Other | Habitat Associations                                                                                                                                                                                          | Potential to Occur or Be Affected in the Project Area <sup>2</sup>                                                                                                                           |
| Plumas ivesia<br>Ivesia sericoleuca                       | _                              | CRPR-1B         | Vernally wet portions of meadows and alkali flats, and in vernal pools within sagebrush scrub or lower montane coniferous forest, often on volcanic soils; 4,300-7,200 ft.                                    | <b>Low.</b> No known occurrences in the project vicinity. No suitable habitat present in the project area. Species occurs west of the project area in Martis Valley.                         |
| Santa Lucia dwarf rush<br>Juncus luciensis                | _                              | CRPR-1B         | Wet, sandy soils in riparian habitats, meadows and seeps,<br>and vernal pools within chaparral, sagebrush scrub, and<br>lower montane coniferous forest; 1,000-6,700 ft. elev.                                | <b>Moderate.</b> Could occur in riparian and freshwater wetland habitats in the project area.                                                                                                |
| Long-petaled lewisia<br>Lewisia longipetala               | SI                             | CRPR-1B         | Northerly exposures on slopes and ridge tops in alpine<br>boulder and rock field, subalpine coniferous forest; often<br>found near the margins of persistent snow banks in wet<br>soils 8,200–9,400 ft. elev. | <b>None.</b> No documented occurrences in vicinity of project area. No suitable habitat present in the project area; and, project area is located below the elevation range of this species. |
| Broad-nerved hump-moss<br>Meesia uliginosa                | _                              | CRPR-2B         | Bogs and fens, and permanently wet meadows, typically spring fed, in subalpine and upper montane coniferous forest; 4,200–8,200 ft. elev.                                                                     | <b>Low.</b> No known occurrences in the project vicinity. Suitable habitat is not present in the project area.                                                                               |
| Whitebark pine<br>Pinus albicaulis                        | FC                             | Ι               | Thin, rocky, cold soils at or near timberline in subalpine forests; 7,000-12,000 ft. elev.                                                                                                                    | <b>None.</b> No suitable habitat present in the project area. The project area is located below the elevation range of this species.                                                         |
| Alder buckthorn<br>Rhamnus alnifolia                      | -                              | CRPR-2B         | Meadows, seeps, and riparian scrub within lower and upper montane coniferous forests; 4,500-7,000 ft. elev.                                                                                                   | <b>Moderate.</b> Potential habitat is present riparian and freshwater wetland habitats in the project area.                                                                                  |
| Tahoe yellow cress<br>Rorippa subumbellata                | SI                             | CE,<br>CRPR-1B  | Decomposed granitic beaches on Lake Tahoe; species is<br>endemic to Lake Tahoe Basin beaches; 6,217–6,234 ft.<br>elev.                                                                                        | None. Species only occurs on beaches of Lake Tahoe.                                                                                                                                          |
| Marsh skullcap<br>Scutellaria galericulata                | _                              | CRPR-2B         | Meadows, seeps, marshes, and swamps in sunny openings<br>in lower montane coniferous forest; 0–7,000 ft. elev.                                                                                                | <b>Moderate.</b> Potential habitat is present in freshwater wetland and riparian habitats in the project area.                                                                               |
| Munro's desert mallow<br>Sphaeralcea munroana             | -                              | CRPR-2B         | Sagebrush scrub; 6,560 ft. elev.                                                                                                                                                                              | None. No known occurrences in the project vicinity. Suitable great basin scrub habitat for this species is not present on the project area.                                                  |
| Fish                                                      |                                |                 |                                                                                                                                                                                                               |                                                                                                                                                                                              |
| Cui-ui<br>Chasmistes cujus                                | E                              | _               | Occurs in Pyramid Lake, spawns in lower Truckee River.                                                                                                                                                        | None. Project area is outside of the known range of this species.                                                                                                                            |
| Lahontan Lake tui chub<br>Gila bicolor pectinifer)        | -                              | C-SSC           | Pelagic fish that feed on zooplankton in the open water of Lake Tahoe.                                                                                                                                        | <b>None.</b> No suitable aquatic habitat is present. Species occurs in Lake Tahoe; spawns in shallow near-shore environments with aquatic vegetation.                                        |
| Lahontan cutthroat trout<br>Oncorhynchus clarkii henshawi | FT, SI                         | -               | Only trout species native to lakes and streams in the Tahoe<br>Basin. Found in both lake and stream habitats, but spawn                                                                                       | <b>Low.</b> The one perennial stream in the project area – Dollar Creek – is not known or currently expected to support this species due to limited habitat                                  |

 Table D-1
 Special-Status Species Evaluated for the Dollar Creek Forest Health and Biomass Project

|                                                  | Regulatory Status <sup>1</sup> |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|--------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species                                          | Federal/<br>TRPA               | State/<br>Other | Habitat Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Potential to Occur or Be Affected in the Project Area <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  |                                |                 | in stream environments. Lahontan cutthroat trout (LCT)<br>requires gravels and riffles for spawning and generally does<br>not persist or occur with nonnative salmonids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | function, barriers to movement, presence of introduced species, and overall rarity of LCT in the watershed. Current population within the Tahoe Basin is restricted to introduced populations in the headwater streams and lakes of the Upper Truckee River watershed, and Fallen Leaf Lake. Lahontan cutthroat trout released into Lake Tahoe in 2011 are not expected to have survived this long due to predation from non-native species.                                                                                                                                                                                                                                                                                                                                     |
| Delta smelt<br>Hypomesus transpacificus          | FT                             | C-SE            | Upper estuarine areas in or just upstream of the mixing zone between fresh and salt water in the San Francisco Bay-Delta.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None. Outside of the known range of the species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Central Valley steelhead<br>Oncorhynchus mykiss  | FT                             | _               | Anadromous or resident inland; rivers in the Sacramento<br>and San Joaquin Valley and their tributaries; needs cold<br>water and gravel substrates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None. Outside of the known range of the species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Amphibians                                       |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sierra Nevada yellow-legged frog<br>Rana sierrae | FE                             | CST             | Occurs in upper elevation lakes, ponds, bogs, and slow-<br>moving alpine streams. Most Sierra Nevada populations<br>are found between 6,000–12,000 feet elevation. Almost<br>always found within 3.280853 feet of water, and<br>associated with montane riparian habitats in lodgepole<br>pine, ponderosa pine, Jeffrey pine, sugar pine, white fir,<br>whitebark pine, and wet meadow vegetation types. Alpine<br>lakes inhabited by mountain yellow-legged frogs generally<br>have grassy or muddy margin habitat, although below<br>treeline sandy and rocky shores may be preferred.<br>Suitable stream habitat can be highly variable, from high<br>gradient streams with plunge pools and waterfalls, to low<br>gradient sections through alpine meadows. Low-gradient<br>streams are preferred because breeding and tadpole<br>development cannot occur in streams with fast-moving<br>water. Small streams are generally unoccupied and have<br>no potential breeding locations because of the lack of<br>depth for overwintering and refuge. Although Sierra<br>Nevada yellow-legged frogs have been observed<br>successfully breeding in shallow locations less than 7 feet<br>deep, typically depth is an important factor for breeding | Low. The only known population in the Tahoe Basin occurs at Hell Hole bog,<br>in the southern end of the Lake Tahoe Basin, over 25 miles south of the<br>project area. The closest known population is outside of the Tahoe Basin in<br>the vicinity of Five Lakes near Squaw Valley. There are also limited records of<br>the species on the Tahoe National Forest, with the largest known population<br>in the Soda Springs area more than 12 miles northwest of the project area.<br>Suitable breeding and wintering habitat necessary for persistence of a<br>population includes perennial waters of sufficient depth to avoid freezing.<br>There are no deep perennial waters in the project area. Therefore, the<br>species is not expected to occur in the project area. |

#### Table D-1 Special-Status Species Evaluated for the Dollar Creek Forest Health and Biomass Project

| Species                                | Regulatory Status* |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------|--------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Federal/<br>TRPA   | State/<br>Other | Habitat Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Potential to Occur of Be Affected III the Project Area <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                    |                 | locations since adults and larvae require overwintering<br>habitat. For up to nine months, adults and larvae will<br>live/hibernate below ice, or in nonfrozen portions of ponds<br>or lakes, so adequate depth (greater than 2 m) is<br>necessary to avoid having the pond or lake freeze<br>through.                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Yosemite toad<br>Bufo canorus          | FT                 | C-SSC           | Endemic California toad found in wet meadows between 4,000 and 12,000 feet in the Sierra Nevada from Alpine County south to Fresno County.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None. Project area is outside of the known range for the species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Birds                                  |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Northern goshawk<br>Accipiter gentilis | SI                 | C-SSC           | In the Sierra Nevada, this species generally requires mature<br>conifer forests with large trees, snags, downed logs, dense<br>canopy cover, and open understories for nesting; aspen<br>stands also are used for nesting. Foraging habitat includes<br>forests with dense to moderately open overstories and open<br>understories interspersed with meadows, brush patches,<br>riparian areas, or other natural or artificial openings.<br>Goshawks reuse old nest structures and maintain alternate<br>nest sites.                                                                                  | <b>High.</b> Northern goshawk has not been documented in the project area. In 2011, focused surveys for goshawk were conducted in a portion of the project area by Hauge Brueck Associates biologists for the Dollar Creek Shared-Use Trail Project (Placer County and TRPA 2012). However, suitable foraging and nesting habitat for northern goshawk is present in conifer forest throughout much of the project area, and multiple detections and goshawk nesting have been documented in the vicinity west and north of the project area. Additionally, a small amount of the southwest corner of the project area is located just within a TRPA-designated goshawk disturbance zone. |
| Golden eagle<br>Aquila chrysaetos      | BGEPA ,SI          | C-FP            | Mountains and foothills throughout California. Nest on cliffs and escarpments or in tall trees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Low.</b> Golden eagle has been documented within the Lake Tahoe Basin, however this species generally prefers to nest on or near rock outcrops and cliffs, and prefers more open habitats for foraging than occurs in the project area.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Long-eared owl<br>Asio otus            | _                  | C-SSC           | Found in a variety of habitat types throughout its range.<br>Nest in woodland, forest, and open settings (e.g.,<br>grassland, shrub-steppe, and desert). Occupy wooded and<br>nonwooded areas that support relatively dense vegetation<br>(e.g., trees, shrubs) adjacent to or within larger open areas<br>such as grasslands or meadows (i.e., habitat edges)<br>(Bloom 1994; Marks, Evans, and Holt 1994). This species<br>also has been documented breeding in contiguous conifer<br>forest habitat with heavy mistletoe infestation (Bull,<br>Wright, and Henjum 1989). Trees and shrubs used for | Low (Nesting). Habitat with some attributes suitable for this species are present (wooded areas); however, species is not known to nest in or near the project area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                                                     | Regulator        | / Status <sup>1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species                                             | Federal/<br>TRPA | State/<br>Other       | Habitat Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Potential to Occur or Be Affected in the Project Area <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     |                  |                       | nesting and roosting include oaks, willows, cottonwoods, conifers, and junipers (Marks, Evans, and Holt 1994).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Western yellow-billed cuckoo<br>Coccyzus americanus | FT               | C-ST                  | Willow and cottonwood riparian habitats along the<br>Sacramento and San Joaquin Rivers in the Central Valley of<br>California.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None. Outside of the known range of the species, and no suitable riparian forest present in the project area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Olive-sided flycatcher<br>Contopus cooperi          | -                | C-SSC                 | Summer resident and migrant that breeds primarily in late-<br>succession conifer forest with open canopy. Species prefers<br>to forage near forest openings or edges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>High.</b> Olive-sided flycatcher has not been documented in the project area, but conifer forest in the project area provides suitable foraging and nesting habitat, and the species is not uncommon in the vicinity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Yellow warbler<br>Setophaga petechia                | _                | C-SSC                 | In the Sierra Nevada, yellow warbler typically breeds in wet<br>areas with dense riparian vegetation. Breeding habitats<br>primarily include willow patches in montane meadows, and<br>riparian scrub and woodland dominated by willow,<br>cottonwood, aspen, or alder with dense understory cover.<br>Localized breeding has been documented in more xeric<br>sites including chaparral, wild rose ( <i>Rosa</i> spp.) thickets, and<br>young conifer stands (Siegel and DeSante 1999, RHJV<br>2004).                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Moderate</b> . Yellow warbler has not been documented in the project area. In 2011, focused surveys for yellow warbler were conducted in a portion of the project area along Dollar Creek by Hauge Brueck Associates biologists for the Dollar Creek Shared-Use Trail Project (Placer County and TRPA 2012). However, riparian habitat along Dollar Creek provides suitable habitat for yellow warbler; other riparian areas in the project area may also provide potential habitat. Because treatment activities and crossings would not occur on Class I (e.g., Dollar Creek) or Class II (intermittent) waterways, or within riparian areas and SEZs (except for the potential for stream crossings on dry, Class III watercourses), forestry treatments would not be implemented within suitable yellow warbler nesting habitat. |
| Willow flycatcher<br>Empidonax traillii brewsteri   | _                | C-SE                  | In the Sierra Nevada, suitable habitat typically consists of<br>montane meadows that support riparian deciduous shrubs<br>(particularly willows) and remain wet through the nesting<br>season (i.e., midsummer). Important characteristics of<br>suitable meadows include a high water table that results in<br>standing or slow-moving water, or saturated soils (e.g.,<br>"swampy" conditions) during the breeding season;<br>abundant riparian deciduous shrub cover (particularly<br>willow); and riparian shrub structure with moderate to high<br>foliar density that is uniform from the ground to the shrub<br>canopy. Most breeding occurrences are in meadows larger<br>than 19 acres, but the average size of occupied meadows is<br>approximately 80 acres. Although less common in the<br>Sierra Nevada, riparian habitat along streams also can<br>function as suitable habitat for willow flycatcher. However, | Low. No riparian areas that contain the necessary hydrology and floodplain<br>characteristics to provide suitable breeding habitat for willow flycatcher are<br>present in the project area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                                                           | Regulatory       | / Status <sup>1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------|------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species                                                   | Federal/<br>TRPA | State/<br>Other       | Habitat Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Potential to Occur or Be Affected in the Project Area <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                           |                  |                       | those areas must support the hydrologic and vegetation<br>characteristics described for suitable meadows (e.g.,<br>standing or slow-moving water, and abundant and dense<br>riparian vegetation).                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Peregrine falcon<br>Falco peregrinus anatum               | TRPA             | C- FP                 | Nest and roost on protected ledges of high cliffs, usually<br>adjacent to water bodies and wetlands that support<br>abundant avian prey.                                                                                                                                                                                                                                                                                                                                                                       | <b>Low.</b> Suitable nesting habitat not present in the project area. However, peregrine falcons could occasionally forage in the study area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bald eagle<br>Haliaeetus leucocephlus                     | De-listed;<br>SI | C-SE, C-<br>FP        | Use ocean shorelines, lake margins, and river courses for<br>both nesting and wintering. Most nests are within 1 mile of<br>water, in large trees with open branches. Roost communally<br>in winter.                                                                                                                                                                                                                                                                                                           | Low. Bald eagle does not nest in or near the project area. This species is<br>known to nest in only two areas of the Tahoe Basin (Emerald Bay and<br>Marlette Lake), which are several miles from the project area. Bald eagle is<br>not expected to regularly use the area due to the lack of foraging habitat (no<br>large waterbodies or streams). Any bald eagle occurrence and habitat use in<br>the area would be most likely during winter, when the species is more<br>abundant in the Tahoe region.                                                                                                                                                  |
| Osprey<br>Pandion haliaetus                               | TRPA             | _                     | Associated with large fish-bearing waters. Nest usually<br>within 0.25 mile of fish-producing water, but may nest up to<br>1.5 miles from water. In the Tahoe Basin, osprey nests are<br>distributed primarily along the Lake Tahoe shoreline, at the<br>northern portion of the east shore and southern portion of<br>the west shore. Other osprey nest sites in the Tahoe Basin<br>occur along the shorelines of smaller lakes (e.g., Fallen Leaf<br>Lake) and in forest uplands up to 1.5 miles from lakes. | Low. Osprey nests and forages in suitable habitat throughout the Tahoe region; however, osprey is not known to nest in the project area. A small portion of the southeast corner is located just within a TRPA-designated osprey 0.25-mile nest buffer; this nest site was not considered active in 2015 (TRPA mapping). Potential perch and nest sites are present in the project area. However, use of the project area by osprey would likely be limited due to the presence of more suitable habitat located nearby on Lake Tahoe. Additionally, proposed fuels and vegetation treatments in the project area are not expected to degrade osprey habitat. |
| Great gray owl<br>Strix nebulosa                          | _                | C-SE                  | Found in Central Sierra mature mixed conifer forests near<br>meadows. Scattered along the west slope of the Sierra,<br>between 4,500 and 7,500 feet elevation, from Plumas<br>County to Yosemite National Park.                                                                                                                                                                                                                                                                                                | None. Suitable habitat is not present in the project area, and the species has not been documented in the area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| California spotted owl<br>Strix occidentalis occidentalis | -                | C-SSC                 | Occur in several forest vegetation types including mixed<br>conifer, ponderosa pine, red fir, and montane hardwood.<br>Nesting habitat is generally characterized by dense canopy<br>closure (i.e., greater than 70 percent) with medium to large<br>trees and multistoried stands (i.e., at least two canopy<br>layers). Foraging habitat can include intermediate to late-                                                                                                                                   | <b>High.</b> Spotted owl has not been documented in the project area. In 2011, focused surveys for spotted owl were conducted in a portion of the project area by Hauge Brueck Associates biologists for the Dollar Creek Shared-Use Trail Project (Placer County and TRPA 2012). However, suitable foraging and nesting habitat for spotted owl is present in conifer forest throughout much of the project area, and multiple detections of spotted                                                                                                                                                                                                         |

| Table D-1 | Special-Status Species Evaluated for the Dollar Creek Forest Health and Biomass Project |
|-----------|-----------------------------------------------------------------------------------------|
|           |                                                                                         |

|                                                              | Regulator        | / Status <sup>1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------|------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species                                                      | Federal/<br>TRPA | State/<br>Other       | Habitat Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Potential to Occur or Be Affected in the Project Area <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                              |                  |                       | successional forest with greater than 40 percent canopy cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | owls have been documented in the vicinity west and north of the project area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mammals                                                      |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sierra Nevada mountain beaver<br>Aplodontia rufa californica | _                | C-SSC                 | Uses riparian habitats with soft, deep soils for burrowing,<br>lush growth of preferred food sources such as willow and<br>alder, and a variety of herbaceous species for bedding<br>material. Vegetation types preferred include wet meadows<br>and willow-alder-dominated riparian corridors typically near<br>water sources. Suitable riparian habitats are characterized<br>by dense growth of small deciduous trees and shrubs near<br>permanent water. Mountain beaver is generally solitary,<br>except during its short breeding season; beavers spend a<br>high proportion of their time in extensive underground<br>burrow systems with multiple openings, tunnels, and food<br>caches.                                                                                                                            | <b>Moderate</b> . Sierra Nevada mountain beaver has not been documented in the project area; however, surveys for the species have not been conducted. Riparian habitat along Dollar Creek provides suitable habitat for Sierra Nevada mountain beaver; and, an occurrence of the species along Dollar Creek upstream of the project area is reported in the CNDDB. Because treatment activities and crossings would not occur on Class I (e.g., Dollar Creek) or Class II (intermittent) waterways, or within riparian areas and SEZs (except for the potential for stream crossings on dry, Class III watercourses), forestry treatments would not be implemented within suitable habitat for Sierra Nevada mountain beaver. |
| Sierra Nevada snowshoe hare Lepus americanus tahoensis.      | _                | C-SSC                 | In the Sierra Nevada, found in boreal zones, typically inhabiting riparian communities with thickets of deciduous trees and shrubs such as willows and alders.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Low.</b> Optimal habitat is not present in the project area where vegetation and fuels treatments would occur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| California wolverine<br>Gulo gulo luteus                     | FPT              | C-ST,<br>C-FP         | Inhabit upper montane and alpine habitats of Sierra<br>Nevada, Cascades, Klamath, and north Coast Ranges.<br>Need water source and denning sites. Rarely seen.<br>Sensitive to human disturbance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Low.</b> Suitable habitat is not present in the project area, and there have been very few documented occurrences in the region.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mule deer<br>Odocoileus hemionus                             | SI               | -                     | Year-long resident or elevational migrant that prefer a wide<br>distribution of various-aged vegetation for cover, meadow,<br>and forest openings, and free water. In the Sierra Nevada,<br>early to mid-successional forests, woodlands, and riparian<br>and brush habitats are preferred because of the greater<br>diversity of shrubby vegetation and woody cover. In addition<br>to forage, vegetative cover is critical for thermoregulation.<br>Suitable habitats include a mosaic of vegetation such as<br>forest or meadow openings, dense woody thickets and<br>brush, edge habitat, and riparian areas. Fawning habitat,<br>used by does during birth and by newborn fawns, is of<br>critical importance for reproductive success. A diversity of<br>thermal cover, hiding cover, succulent forage, and water are | <b>Present</b> . The project area includes suitable foraging habitat and deer are present there. The project area includes potential fawning habitat for mule deer in riparian and wet meadow areas; however, the suitability of these areas for deer fawning is limited due to the existing levels of human disturbance and lack of dense vegetation in some areas.                                                                                                                                                                                                                                                                                                                                                           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Regulator        | y Status <sup>1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Federal/<br>TRPA | State/<br>Other       | Habitat Associations                                                                                                                                                                                                                                                                                                                                                                                               | Potential to Occur or Be Affected in the Project Area <sup>2</sup>                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                       | needed during fawning. Optimal deer fawning habitat has<br>been described as having moderate to dense shrub cover<br>near forest cover and water, such as riparian zones. A<br>source of surface water (e.g., creek or river) is especially<br>important to mule deer. Typical fawning habitat varies in<br>size, but an area of 5–26 acres is adequate, with optimal<br>fawn-rearing habitat of around 400 acres. |                                                                                                                                                                                                                             |  |
| Townsend's big-eared bat<br>Corynorhinus townsendii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                | C-SSC,<br>WBWG-H      | Range throughout California, mostly in mesic habitats.<br>Limited by available roost sites (i.e., caves, tunnels, mines,<br>and buildings).                                                                                                                                                                                                                                                                        | <b>Low.</b> This species has been detected only infrequently in the Tahoe Basin, and optimal roosting habitat is not present in the project area.                                                                           |  |
| Pallid bat<br>Antrozous pallidus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                | C-SSC,<br>WBWG-H      | Locally common at lower elevations in California and occurs<br>in grassland, shrubland, woodland, and mixed conifer<br>forests. Absent from highest elevation locations in the Sierra<br>Nevada. Rocky outcrops, caves, crevices, and occasional<br>tree cavities or buildings provide roosts.                                                                                                                     | <b>Moderate</b> . No documented occurrences in the project area; however, conifer forest habitat in the project area could provide foraging or roosting habitat. Large trees and snags may provide suitable roosting sites. |  |
| Western red bat<br>Lasiurus blossevillii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                | C-SSC,<br>WBWG-H      | Day roosting common in edge habitats adjacent to streams<br>or open fields, in orchards, and sometimes in urban areas.<br>An association with intact riparian habitat may exist<br>(particularly willows, cottonwoods, and sycamores).                                                                                                                                                                             | <b>Moderate.</b> In the project area, western red bat has not been documented but potential habitat is present and the species could occur, particularly along the Dollar Creek riparian zone.                              |  |
| <sup>1</sup> Regulatory Status Definitions:       State:         TRPA/Federal:       CA (California Department of Fish and Wildlife)         SI       =       TRPA sensitive/special interest (threshold) species       C-SE       =       California Endangered         FT       =       Threatened species under the Federal Endangered Species Act       C-ST       =       California Threatened         FE       =       Endangered species under the Federal Endangered Species Act       C-ST       =       California Threatened         FPT       =       Proposed for listing as Threatened under the Federal Endangered Species Act       C-SSC       =       California Fully Protected         FPT       =       Proposed for listing under the Federal Endangered Species Act       C-SSC       =       California Rare Plant Rank         BGEPA       =       Protected under the Bald and Golden Eagle Protection Act       1A       =       Plants considered rare or endangered in California and elsewhere         2       =       Plants considered rare or endangered in California, but more common elsewhere.       Other:         WBWG       =       Western Bat Working Group       H       =       Bats with high priority |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |

#### Table D-1 Special-Status Species Evaluated for the Dollar Creek Forest Health and Biomass Project

#### <sup>2</sup> Potential for Occurrence Definitions

Present - Species was observed during site visits conducted for this analysis or was documented on the site by another reputable source.

High - All of the species' specific life history requirements can be met by habitat present on the site, and populations/occurrences are known to occur in the immediate vicinity.

*Moderate* – Some or all of the species life history requirements are provided by habitat on the site; populations/occurrences may not be known to occur in the immediate vicinity, but are known to occur in the region (Tahoe Basin). *Low* – Species not likely or expected to occur due to marginal habitat quality or distance from known occurrences.

None - None of the species' life history requirements are provided by habitat on the site and/or the site is outside of the known distribution or elevation range for the species.